This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
In formal set theory (i.e. ZF), "set" is an undefined term. It ends up having to be, similar to how "number" and "point" also remain undefined.
Hence, the empty set is not hampered by definition. In set theories, it is generally one of the easier theorems to prove that a set without elements exists and is unique, and thus one has an empty set.
Is not zero a well-defined and distinct number? If we define numbers to be well-defined distinct quantities, it could be argued that zero is not a number, because nothing is not a quantity. The argument is trivial; whether or not zero is considered a number, it doesn't affect anything we do. 1 - 1 would still be nothing. In the same vein, whether or not the null set is a set is a meaningless question, because it doesn't affect our calculations in any way.
It is not a meaningless question; it is a question of existence. In a set theory, can one prove that there exists a set without any elements? The answer is: yes, one can. Furthermore, one can generally prove uniqueness too, so we can talk about "the" null set, as opposed to "a" null set.
The key idea is that sets are not defined (and neither are numbers, as you've touched upon). They are constructed, and their properties are stated, but they are not defined.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
A collection of nothing is still a collection.
Log in to reply
said the troll.
In formal set theory (i.e. ZF), "set" is an undefined term. It ends up having to be, similar to how "number" and "point" also remain undefined.
Hence, the empty set is not hampered by definition. In set theories, it is generally one of the easier theorems to prove that a set without elements exists and is unique, and thus one has an empty set.
Is not zero a well-defined and distinct number? If we define numbers to be well-defined distinct quantities, it could be argued that zero is not a number, because nothing is not a quantity. The argument is trivial; whether or not zero is considered a number, it doesn't affect anything we do. 1 - 1 would still be nothing. In the same vein, whether or not the null set is a set is a meaningless question, because it doesn't affect our calculations in any way.
Log in to reply
It is not a meaningless question; it is a question of existence. In a set theory, can one prove that there exists a set without any elements? The answer is: yes, one can. Furthermore, one can generally prove uniqueness too, so we can talk about "the" null set, as opposed to "a" null set.
The key idea is that sets are not defined (and neither are numbers, as you've touched upon). They are constructed, and their properties are stated, but they are not defined.
Give answer with proof