Fibonacci Sequence: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , … 1,1,2,3,5,8,13,21,\dots 1 , 1 , 2 , 3 , 5 , 8 , 1 3 , 2 1 , …
{ F 0 = 0 F 1 = 1 F n + 2 = F n + 1 + F n \begin{cases}F_0=0\\F_1=1\\F_{n+2}=F_{n+1}+F_n\end{cases} ⎩ ⎪ ⎨ ⎪ ⎧ F 0 = 0 F 1 = 1 F n + 2 = F n + 1 + F n
F n + 2 − F n + 1 − F n = 0 F_{n+2}-F_{n+1}-F_n=0 F n + 2 − F n + 1 − F n = 0
Suppose F n = r n F_n=r^n F n = r n solves this equation for some r ≠ 0 r≠0 r = 0 .
r n + 2 − r n + 1 − r n = 0 r n ( r 2 − r − 1 ) = 0 r 2 − r − 1 = 0 r = 1 ± 5 2 \begin{aligned}
r^{n+2}-r^{n+1}-r^n&=0\\
r^n(r^2-r-1)&=0\\
r^2-r-1&=0\\
r&=\frac{1±\sqrt{5}}{2}
\end{aligned} r n + 2 − r n + 1 − r n r n ( r 2 − r − 1 ) r 2 − r − 1 r = 0 = 0 = 0 = 2 1 ± 5
F n = A ( 1 + 5 2 ) n + B ( 1 − 5 2 ) n F_n=A\left(\frac{1+\sqrt{5}}{2}\right)^n+B\left(\frac{1-\sqrt{5}}{2}\right)^n F n = A ( 2 1 + 5 ) n + B ( 2 1 − 5 ) n solves F n + 2 − F n + 1 − F n = 0 F_{n+2}-F_{n+1}-F_n=0 F n + 2 − F n + 1 − F n = 0 .
F 0 = A ( 1 + 5 2 ) 0 + B ( 1 − 5 2 ) 0 0 = A + B B = − A \begin{aligned}
F_0&=A\left(\frac{1+\sqrt{5}}{2}\right)^0+B\left(\frac{1-\sqrt{5}}{2}\right)^0\\
0&=A+B\\
B&=-A
\end{aligned} F 0 0 B = A ( 2 1 + 5 ) 0 + B ( 2 1 − 5 ) 0 = A + B = − A
F 1 = A ( 1 + 5 2 ) 1 + B ( 1 − 5 2 ) 1 1 = A ( 1 + 5 2 ) − A ( 1 − 5 2 ) 1 = A ( 1 + 5 2 − 1 − 5 2 ) 1 = A 5 A = 1 5 ⇒ B = − 1 5 \begin{aligned}
F_1&=A\left(\frac{1+\sqrt{5}}{2}\right)^1+B\left(\frac{1-\sqrt{5}}{2}\right)^1\\
1&=A\left(\frac{1+\sqrt{5}}{2}\right)-A\left(\frac{1-\sqrt{5}}{2}\right)\\
1&=A\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right)\\
1&=A\sqrt{5}\\
A&=\frac{1}{\sqrt{5}}\Rightarrow B=-\frac{1}{\sqrt{5}}
\end{aligned} F 1 1 1 1 A = A ( 2 1 + 5 ) 1 + B ( 2 1 − 5 ) 1 = A ( 2 1 + 5 ) − A ( 2 1 − 5 ) = A ( 2 1 + 5 − 2 1 − 5 ) = A 5 = 5 1 ⇒ B = − 5 1
F n = A ( 1 + 5 2 ) n + B ( 1 − 5 2 ) n = 1 5 ( 1 + 5 ) n 2 n − 1 5 ( 1 − 5 ) n 2 n = 1 5 [ ( 1 + 5 ) n 2 n − ( 1 + 5 ) n 2 n ] = 1 5 ( 1 + 5 ) n − ( 1 − 5 ) n 2 n \begin{aligned}
F_n&=A\left(\frac{1+\sqrt{5}}{2}\right)^n+B\left(\frac{1-\sqrt{5}}{2}\right)^n\\
&=\frac{1}{\sqrt{5}}\frac{\left(1+\sqrt{5}\right)^n}{2^n}-\frac{1}{\sqrt{5}}\frac{\left(1-\sqrt{5}\right)^n}{2^n}\\
&=\frac{1}{\sqrt{5}}\left[\frac{\left(1+\sqrt{5}\right)^n}{2^n}-\frac{\left(1+\sqrt{5}\right)^n}{2^n}\right]\\
&=\frac{1}{\sqrt{5}}\frac{\left(1+\sqrt{5}\right)^n-\left(1-\sqrt{5}\right)^n}{2^n}\\
\end{aligned} F n = A ( 2 1 + 5 ) n + B ( 2 1 − 5 ) n = 5 1 2 n ( 1 + 5 ) n − 5 1 2 n ( 1 − 5 ) n = 5 1 [ 2 n ( 1 + 5 ) n − 2 n ( 1 + 5 ) n ] = 5 1 2 n ( 1 + 5 ) n − ( 1 − 5 ) n
∴ F n = ( 1 + 5 ) n − ( 1 − 5 ) n 2 n 5 \therefore\boxed{F_n=\frac{\left(1+\sqrt{5}\right)^n-\left(1-\sqrt{5}\right)^n}{2^n\sqrt{5}}} ∴ F n = 2 n 5 ( 1 + 5 ) n − ( 1 − 5 ) n
Proof by induction:
Base cases:
F n ∣ n = 0 = ( 1 + 5 ) 0 − ( 1 − 5 ) 0 2 0 5 = 1 − 1 1 5 = 0 5 = 0 F n ∣ n = 0 = F 0 \begin{aligned}
F_n\rvert_{n=0}&=\frac{\left(1+\sqrt{5}\right)^0-\left(1-\sqrt{5}\right)^0}{2^0\sqrt{5}}\\
&=\frac{1-1}{1\sqrt{5}}\\
&=\frac{0}{\sqrt{5}}\\
&=0\\
F_n\rvert_{n=0}&=F_0
\end{aligned} F n ∣ n = 0 F n ∣ n = 0 = 2 0 5 ( 1 + 5 ) 0 − ( 1 − 5 ) 0 = 1 5 1 − 1 = 5 0 = 0 = F 0
F n ∣ n = 1 = ( 1 + 5 ) 1 − ( 1 − 5 ) 1 2 1 5 = 1 + 5 − 1 + 5 2 5 = 2 5 2 5 = 1 F n ∣ n = 1 = F 1 \begin{aligned}
F_n\rvert_{n=1}&=\frac{\left(1+\sqrt{5}\right)^1-\left(1-\sqrt{5}\right)^1}{2^1\sqrt{5}}\\
&=\frac{1+\sqrt{5}-1+\sqrt{5}}{2\sqrt{5}}\\
&=\frac{2\sqrt{5}}{2\sqrt{5}}\\
&=1\\
F_n\rvert_{n=1}&=F_1
\end{aligned} F n ∣ n = 1 F n ∣ n = 1 = 2 1 5 ( 1 + 5 ) 1 − ( 1 − 5 ) 1 = 2 5 1 + 5 − 1 + 5 = 2 5 2 5 = 1 = F 1
Inductive hypothesis: assume F n = ( 1 + 5 ) n − ( 1 − 5 ) n 2 n 5 F_n=\frac{\left(1+\sqrt{5}\right)^n-\left(1-\sqrt{5}\right)^n}{2^n\sqrt{5}} F n = 2 n 5 ( 1 + 5 ) n − ( 1 − 5 ) n is true for n = k n=k n = k .
F k = ( 1 + 5 ) k − ( 1 − 5 ) k 2 k 5 F_k=\frac{\left(1+\sqrt{5}\right)^k-\left(1-\sqrt{5}\right)^k}{2^k\sqrt{5}} F k = 2 k 5 ( 1 + 5 ) k − ( 1 − 5 ) k
F k + 1 = F k + F k − 1 = ( 1 + 5 ) k − ( 1 − 5 ) k 2 k 5 + ( 1 + 5 ) k − 1 − ( 1 − 5 ) k − 1 2 k − 1 5 = 2 ( 1 + 5 ) k − 2 ( 1 − 5 ) k + 4 ( 1 + 5 ) k − 1 − 4 ( 1 − 5 ) k − 1 2 k + 1 5 = 2 ( 1 + 5 ) k − 1 ( 1 + 5 + 2 ) − 2 ( 1 − 5 ) k − 1 ( 1 − 5 + 2 ) 2 k + 1 5 = ( 1 + 5 ) k − 1 ( 2 + 2 5 + 4 ) − ( 1 − 5 ) k − 1 ( 2 − 2 5 + 4 ) 2 k + 1 5 = ( 1 + 5 ) k − 1 ( 1 + 2 5 + 5 ) − ( 1 − 5 ) k − 1 ( 1 − 2 5 + 5 ) 2 k + 1 5 = ( 1 + 5 ) k − 1 ( 1 + 5 ) 2 − ( 1 − 5 ) k − 1 ( 1 − 5 ) 2 2 k + 1 5 F k + 1 = ( 1 + 5 ) k + 1 − ( 1 − 5 ) k + 1 2 k + 1 5 ■ \begin{aligned}
F_{k+1}&=F_k+F_{k-1}\\
&=\frac{\left(1+\sqrt{5}\right)^k-\left(1-\sqrt{5}\right)^k}{2^k\sqrt{5}}+\frac{\left(1+\sqrt{5}\right)^{k-1}-\left(1-\sqrt{5}\right)^{k-1}}{2^{k-1}\sqrt{5}}\\
&=\frac{2\left(1+\sqrt{5}\right)^k-2\left(1-\sqrt{5}\right)^k+4\left(1+\sqrt{5}\right)^{k-1}-4\left(1-\sqrt{5}\right)^{k-1}}{2^{k+1}\sqrt{5}}\\
&=\frac{2\left(1+\sqrt{5}\right)^{k-1}\left(1+\sqrt{5}+2\right)-2\left(1-\sqrt{5}\right)^{k-1}\left(1-\sqrt{5}+2\right)}{2^{k+1}\sqrt{5}}\\
&=\frac{\left(1+\sqrt{5}\right)^{k-1}\left(2+2\sqrt{5}+4\right)-\left(1-\sqrt{5}\right)^{k-1}\left(2-2\sqrt{5}+4\right)}{2^{k+1}\sqrt{5}}\\
&=\frac{\left(1+\sqrt{5}\right)^{k-1}\left(1+2\sqrt{5}+5\right)-\left(1-\sqrt{5}\right)^{k-1}\left(1-2\sqrt{5}+5\right)}{2^{k+1}\sqrt{5}}\\
&=\frac{\left(1+\sqrt{5}\right)^{k-1}\left(1+\sqrt{5}\right)^2-\left(1-\sqrt{5}\right)^{k-1}\left(1-\sqrt{5}\right)^2}{2^{k+1}\sqrt{5}}\\
F_{k+1}&=\frac{\left(1+\sqrt{5}\right)^{k+1}-\left(1-\sqrt{5}\right)^{k+1}}{2^{k+1}\sqrt{5}}\quad\blacksquare
\end{aligned} F k + 1 F k + 1 = F k + F k − 1 = 2 k 5 ( 1 + 5 ) k − ( 1 − 5 ) k + 2 k − 1 5 ( 1 + 5 ) k − 1 − ( 1 − 5 ) k − 1 = 2 k + 1 5 2 ( 1 + 5 ) k − 2 ( 1 − 5 ) k + 4 ( 1 + 5 ) k − 1 − 4 ( 1 − 5 ) k − 1 = 2 k + 1 5 2 ( 1 + 5 ) k − 1 ( 1 + 5 + 2 ) − 2 ( 1 − 5 ) k − 1 ( 1 − 5 + 2 ) = 2 k + 1 5 ( 1 + 5 ) k − 1 ( 2 + 2 5 + 4 ) − ( 1 − 5 ) k − 1 ( 2 − 2 5 + 4 ) = 2 k + 1 5 ( 1 + 5 ) k − 1 ( 1 + 2 5 + 5 ) − ( 1 − 5 ) k − 1 ( 1 − 2 5 + 5 ) = 2 k + 1 5 ( 1 + 5 ) k − 1 ( 1 + 5 ) 2 − ( 1 − 5 ) k − 1 ( 1 − 5 ) 2 = 2 k + 1 5 ( 1 + 5 ) k + 1 − ( 1 − 5 ) k + 1 ■
#Algebra
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Wow!!!!!!!!!!!!!!!!!!! @Gandoff Tan
The proof has used techniques to solve a recursion. Nice!
What does n|n=1 mean? In Hungary we use a|b if a%b=0.