Given that x2∫0x(f(t))3 dt=(∫0xf(t) dt)3x^2\displaystyle\int_{0}^{x} (f(t))^3 \ dt=\left(\displaystyle\int_{0}^{x} f(t) \ dt \right)^3x2∫0x(f(t))3 dt=(∫0xf(t) dt)3 find all the possible functions f(x)f(x)f(x).
Note by Pratik Shastri 6 years, 8 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
We begin with writing :
g(x)=∫0xf(t)dtg(x)=\int _{ 0 }^{ x }{ f(t)dt } g(x)=∫0xf(t)dt
⇒g1(x)=f(x)\Rightarrow {g}_{1}(x)=f(x)⇒g1(x)=f(x) where g1(x)=dg(x)dx{g}_{1}(x)=\frac{dg(x)}{dx}g1(x)=dxdg(x)
Our equation becomes x2∫0xf(t)3dt=g(x)3{x}^{2}\int _{ 0 }^{ x }{ { f(t) }^{ 3 }dt } = { g(x) }^{ 3 }x2∫0xf(t)3dt=g(x)3 (i)
Differentiating both sides with respect to x we get :
2x∫0xf(t)3dt+x2(g1(x))3=3(g(x)2)(g′(x))2x\int _{ 0 }^{ x }{ { f(t) }^{ 3 }dt }+{x}^{2} {({g}_{1}(x))}^{3}=3({g(x)}^{2})({g}^{'}(x))2x∫0xf(t)3dt+x2(g1(x))3=3(g(x)2)(g′(x)) (ii)
Using (i) we write (ii) as :
2(g(x)3x)+x2(g1(x))3=3(g(x)2)(g1(x))2(\frac { { g(x })^{ 3 } }{ x }) + {x}^{2}{({g}_{1}(x))}^{3}=3({g(x)}^{2})({g}_{1}(x))2(xg(x)3)+x2(g1(x))3=3(g(x)2)(g1(x)) (iii)
After some rearranging we get :
(xg1(x))3−3g(x)2(xg1(x))+2g(x)3=0{(x{g}_{1}(x))}^{3}-3{g(x)}^{2}(x{g}_{1}(x))+2{g(x)}^{3}=0(xg1(x))3−3g(x)2(xg1(x))+2g(x)3=0
Dividing both sides by g(x)3{g(x)}^{3}g(x)3 we get :
(xg1(x)g(x))3−3(xg1(x)g(x))+2=0{(\frac { x{ g }_{ 1 }(x) }{ g(x) })}^{3}-3(\frac { x{ g }_{ 1 }(x) }{ g(x) }) +2 =0(g(x)xg1(x))3−3(g(x)xg1(x))+2=0
Take xg1(x)g(x)=y\frac { x{ g }_{ 1 }(x) }{ g(x) } =yg(x)xg1(x)=y to get our equation as :
y3−3y+2=0{y}^{3}-3y+2=0y3−3y+2=0
Factorising this we get :
(y+2)(y−1)2=0(y+2){(y-1)}^{2}=0(y+2)(y−1)2=0
⇒y=−2,1\Rightarrow y=-2,1⇒y=−2,1
We will deal both these cases seperately :
Case-1,y=1y=1y=1
xg1(x)g(x)=1\frac { x{ g }_{ 1 }(x) }{ g(x) } =1g(x)xg1(x)=1
⇒∫dg(x)g(x)=∫dxx\Rightarrow \int { \frac { dg(x) }{ g(x) } } =\int { \frac { dx }{ x } } ⇒∫g(x)dg(x)=∫xdx
⇒g(x)=Cx\Rightarrow g(x)=Cx⇒g(x)=Cx,
Differentiating both sides we get :
f(x)=Cf(x)=C f(x)=C (iv)
Case-2,y=−2y=-2y=−2
xg1(x)g(x)=−2\frac { x{ g }_{ 1 }(x) }{ g(x) } =-2g(x)xg1(x)=−2
⇒∫dg(x)g(x)=∫−2dxx\Rightarrow \int { \frac { dg(x) }{ g(x) } } =\int { \frac {-2dx }{ x } } ⇒∫g(x)dg(x)=∫x−2dx
⇒g(x)=Cx2\Rightarrow g(x)=\frac{C}{{x}^{2}}⇒g(x)=x2C
But since g(0)=0g(0)=0g(0)=0 hence no value of CCC exists.
So the only function that exists is f(x)=Cf(x)=Cf(x)=C
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
We begin with writing :
g(x)=∫0xf(t)dt
⇒g1(x)=f(x) where g1(x)=dxdg(x)
Our equation becomes x2∫0xf(t)3dt=g(x)3 (i)
Differentiating both sides with respect to x we get :
2x∫0xf(t)3dt+x2(g1(x))3=3(g(x)2)(g′(x)) (ii)
Using (i) we write (ii) as :
2(xg(x)3)+x2(g1(x))3=3(g(x)2)(g1(x)) (iii)
After some rearranging we get :
(xg1(x))3−3g(x)2(xg1(x))+2g(x)3=0
Dividing both sides by g(x)3 we get :
(g(x)xg1(x))3−3(g(x)xg1(x))+2=0
Take g(x)xg1(x)=y to get our equation as :
y3−3y+2=0
Factorising this we get :
(y+2)(y−1)2=0
⇒y=−2,1
We will deal both these cases seperately :
Case-1,y=1
g(x)xg1(x)=1
⇒∫g(x)dg(x)=∫xdx
⇒g(x)=Cx,
Differentiating both sides we get :
f(x)=C (iv)
Case-2,y=−2
g(x)xg1(x)=−2
⇒∫g(x)dg(x)=∫x−2dx
⇒g(x)=x2C
But since g(0)=0 hence no value of C exists.
So the only function that exists is f(x)=C