Functional Functions that Function

Find all functions f:RRf : \mathbb{R} \rightarrow \mathbb{R} such that f(x+y)+2f(xy)+f(x)+2f(y)=4x+yf (x + y) + 2f (x - y) + f (x) + 2f (y) = 4x + y for all real xx and yy.

#Algebra

Note by Yuxuan Seah
6 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

For all x, f(x)=0 I HAVE A PROOF BUT AM HAVING PROBLEM TO POST IT. Hence, I GIVE THE STRATERGY PLUG y=0, You get f(x)=x-r where 2r=f(0) Then plugging in for functions we get 8r=0 GIVING THE RESULT r=0 AND HENCE, f(x)=x for all x

A Former Brilliant Member - 6 years, 10 months ago

SORRY, I MISTYPED IN THE FIRST LINE,f(x)=0 but it is f(x)=x

A Former Brilliant Member - 6 years, 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...