Find all such functions f:R+→R+f: \mathbb{ R }^{ + }\rightarrow \mathbb{ R }^{ + }f:R+→R+ such that
f(x+f(y))=f(x+y)+f(y)\large{f\left( x+f\left( y \right) \right) =f\left( x+y \right) +f\left( y \right) }f(x+f(y))=f(x+y)+f(y)
for all x,y∈R+x,y \in \mathbb R^{+}x,y∈R+.
Note by Department 8 5 years, 7 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
@Sharky Kesa , @Nihar Mahajan ,@Satyajit Mohanty ,@Sandeep Bhardwaj ,@Otto Bretscher please share this and invite other people to solve this question.
Log in to reply
@Chew-Seong Cheong , @Calvin Lin ,
Let f∈F(R+,R+)f \in \mathcal{F}(\mathbb{R}^+,\mathbb{R}^+) f∈F(R+,R+) such that ∀x,y∈R+,f(x+f(y))=f(x+y)+f(y) \forall x,y \in \mathbb{R}^+, f(x+f(y))=f(x+y)+f(y) ∀x,y∈R+,f(x+f(y))=f(x+y)+f(y).
Let x∈R+x \in \mathbb{R}^+ x∈R+. We have that
f(x+f(x))=f(2x)+f(x)f(x+f(x))=f(2x)+f(x) f(x+f(x))=f(2x)+f(x) (1.)
And we also have that (f(x+f(x))=f(2x)+f(x))∧(f(x2+f(x2))=f(x)+f(x2)) ⟹ (f(x+f(x))−f(x2+f(x2))=f(x)−f(x2))(f(x+f(x))=f(2x)+f(x)) \land (f(\frac{x}{2}+f(\frac{x}{2}))=f(x)+f(\frac{x}{2}) ) \implies (f(x+f(x))-f(\frac{x}{2}+f(\frac{x}{2}))=f(x)-f(\frac{x}{2}) ) (f(x+f(x))=f(2x)+f(x))∧(f(2x+f(2x))=f(x)+f(2x))⟹(f(x+f(x))−f(2x+f(2x))=f(x)−f(2x))
So, ∀x∈R+,f(2x+f(2x))−f(x+f(x))=f(2x)−f(x) \forall x \in \mathbb{R}^+, f(2x+f(2x))-f(x+f(x))=f(2x)-f(x) ∀x∈R+,f(2x+f(2x))−f(x+f(x))=f(2x)−f(x)
Let x∈R+x \in \mathbb{R}^+ x∈R+. We have, by (1.), that
f(2x+f(2x))−f(x+f(x))=f(x+f(x))−2f(x) ⟹ f(2x+f(2x))=2(f(x+f(x))−f(x)) ⟹ f(2x+f(2x))=2f(2x) f(2x+f(2x))-f(x+f(x))=f(x+f(x))-2f(x) \implies f(2x+f(2x))=2(f(x+f(x))-f(x)) \implies f(2x+f(2x))=2f(2x) f(2x+f(2x))−f(x+f(x))=f(x+f(x))−2f(x)⟹f(2x+f(2x))=2(f(x+f(x))−f(x))⟹f(2x+f(2x))=2f(2x)
So, ∀x∈R+,f(x+f(x))=2f(x) \forall x \in \mathbb{R}^+, f(x+f(x))=2f(x)∀x∈R+,f(x+f(x))=2f(x). Let x∈R+x \in \mathbb{R}^+ x∈R+. In these conditions we have that
f(x+f(x))=2f(x)) ⟹ f(2x)+f(x)=2f(x) ⟹ f(2x)=f(x) f(x+f(x))=2f(x)) \implies f(2x)+f(x)=2f(x) \implies f(2x)=f(x) f(x+f(x))=2f(x))⟹f(2x)+f(x)=2f(x)⟹f(2x)=f(x) (2.)
It is easy to verify that (2.) implies that ∃c∈R:f=c \exists c \in \mathbb{R}: f=c ∃c∈R:f=c and it is also easy to verify that f=0f=0 f=0 is the particular solution.
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
@Sharky Kesa , @Nihar Mahajan ,@Satyajit Mohanty ,@Sandeep Bhardwaj ,@Otto Bretscher please share this and invite other people to solve this question.
Log in to reply
@Chew-Seong Cheong , @Calvin Lin ,
Let f∈F(R+,R+) such that ∀x,y∈R+,f(x+f(y))=f(x+y)+f(y).
Let x∈R+. We have that
f(x+f(x))=f(2x)+f(x) (1.)
And we also have that (f(x+f(x))=f(2x)+f(x))∧(f(2x+f(2x))=f(x)+f(2x))⟹(f(x+f(x))−f(2x+f(2x))=f(x)−f(2x))
So, ∀x∈R+,f(2x+f(2x))−f(x+f(x))=f(2x)−f(x)
Let x∈R+. We have, by (1.), that
f(2x+f(2x))−f(x+f(x))=f(x+f(x))−2f(x)⟹f(2x+f(2x))=2(f(x+f(x))−f(x))⟹f(2x+f(2x))=2f(2x)
So, ∀x∈R+,f(x+f(x))=2f(x). Let x∈R+. In these conditions we have that
f(x+f(x))=2f(x))⟹f(2x)+f(x)=2f(x)⟹f(2x)=f(x) (2.)
It is easy to verify that (2.) implies that ∃c∈R:f=c and it is also easy to verify that f=0 is the particular solution.