f(x)=x f(x) = x

Suppose that f:[0,1][0,1] f: [0,1] \rightarrow [0,1] is a continuous function. Show that is has a fixed point, i.e there is a real number xx such that f(x)=x f(x) = x .


This is a list of Calculus proof based problems that I like. Please avoid posting complete solutions, so that others can work on it.

#Calculus #Proofs

Note by Calvin Lin
7 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

On [0,1][0,1], consider : g(x)=f(x)xg(x)=f(x)-x, then : g(0)=f(0)0g(0)=f(0)\geq 0, and g(1)=f(1)10g(1)=f(1)-1\leq 0, because : 0f(x)10\leq f(x)\leq 1.

And note that gg is continuous since it is the sum of two contisinuous functions. Therefore it has a root in [0,1][0,1] by the IVT. Which is equivalent with saying that there is some x[0,1]x\in [0,1] such that x=f(x)x=f(x).

Haroun Meghaichi - 7 years, 2 months ago
×

Problem Loading...

Note Loading...

Set Loading...