∫−∞∞dxΓ(α+x)Γ(β−x)=2α+β−2Γ(α+β−1);ℜ(α+β)>1 \large \int_{-\infty}^{\infty} \dfrac{ \mathrm{d} x}{\Gamma(\alpha +x) \Gamma (\beta - x)} = \dfrac{2^{\alpha + \beta -2}}{\Gamma(\alpha + \beta -1)} \quad ; \quad \Re (\alpha + \beta) > 1∫−∞∞Γ(α+x)Γ(β−x)dx=Γ(α+β−1)2α+β−2;ℜ(α+β)>1
Prove the equation above without using the method of residues.
Notation: Γ(⋅) \Gamma(\cdot) Γ(⋅) denotes the gamma function.
This is a part of the set Formidable Series and Integrals.
Note by Ishan Singh 5 years, 3 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Let ξ=∫−∞∞dxΓ(α+x)Γ(β−x)\displaystyle \xi=\int_{-\infty}^{\infty}\frac{dx}{\Gamma(\alpha +x)\Gamma(\beta -x)}ξ=∫−∞∞Γ(α+x)Γ(β−x)dx Substitute α+x−1=u\displaystyle \alpha+x-1=uα+x−1=u and then for convenience let α+β−2=n\displaystyle \alpha+\beta-2=nα+β−2=n , hence we get ξ=∫−∞∞duΓ(u+1)Γ(n+1−u)\displaystyle \xi=\int_{-\infty}^{\infty}\frac{du}{\Gamma(u+1)\Gamma(n+1-u)}ξ=∫−∞∞Γ(u+1)Γ(n+1−u)du
Now using that Γ(z+1)=zΓ(z)\displaystyle \Gamma(z+1)=z\Gamma(z)Γ(z+1)=zΓ(z) and similarly Γ(n+1−u)=Γ(1−u)∏k=0n(k−u)=(−1)nΓ(1−u)∏k=0n(u−k)\displaystyle \Gamma(n+1-u)=\Gamma(1-u)\prod_{k=0}^n(k-u)=(-1)^n\Gamma(1-u)\prod_{k=0}^n(u-k)Γ(n+1−u)=Γ(1−u)k=0∏n(k−u)=(−1)nΓ(1−u)k=0∏n(u−k)
We get ξ=∫−∞∞(−1)nduΓ(u)Γ(1−u)∏k=0n(u−k)\xi=\int_{-\infty}^{\infty}\frac{(-1)^n du}{\displaystyle \Gamma(u)\Gamma(1-u)\prod_{k=0}^n(u-k)}ξ=∫−∞∞Γ(u)Γ(1−u)k=0∏n(u−k)(−1)ndu
Now using the Euler's Reflection formula that Γ(u)Γ(1−u)=πcsc(πu)\displaystyle \Gamma(u)\Gamma(1-u)=\pi\csc(\pi u)Γ(u)Γ(1−u)=πcsc(πu) and the partial fraction decomposition as 1∏k=0n(u−k)=∑k=0naku−k\displaystyle \frac{1}{\displaystyle \prod_{k=0}^n(u-k)}=\sum_{k=0}^n\frac{a_k}{u-k}k=0∏n(u−k)1=k=0∑nu−kak for some ai∈R∀ i∈{0,1,⋯ ,n}\displaystyle a_i\in\Bbb{R}\forall\space i\in\{0,1,\cdots,n\}ai∈R∀ i∈{0,1,⋯,n}. Computing explicitly we get ak=(−1)n−kk!(n−k)!\displaystyle a_k=\frac{(-1)^{n-k}}{k!(n-k)!}ak=k!(n−k)!(−1)n−k. Using this and interchanging the summation and integral signs we get ξ=1πn!∑k=0n(−1)n(−1)n+k(nk)∫−∞∞sin(πu)u−kdu\displaystyle \xi=\frac{1}{\pi n!}\sum_{k=0}^n(-1)^n(-1)^{n+k}\binom{n}{k}\int_{-\infty}^{\infty}\frac{\sin(\pi u)}{u-k}duξ=πn!1k=0∑n(−1)n(−1)n+k(kn)∫−∞∞u−ksin(πu)du
Now substituting u−k=t\displaystyle u-k=tu−k=t in the integral we get =1πn!∑k=0n(−1)k(nk)∫−∞∞sin(πt+πk)tdt\displaystyle =\frac{1}{\pi n!}\sum_{k=0}^n(-1)k\binom{n}{k}\int_{-\infty}^{\infty}\frac{\sin(\pi t+\pi k)}{t}dt=πn!1k=0∑n(−1)k(kn)∫−∞∞tsin(πt+πk)dt
But sin(πt+πk)=(−1)ksin(πt)\displaystyle \sin(\pi t+\pi k)=(-1)^k\sin(\pi t)sin(πt+πk)=(−1)ksin(πt). Using this alongwith the substitution πt=y\pi t=yπt=y in the integral we get that ξ=1πn!∑k=0n(nk)∫−∞∞sinyydy\displaystyle \xi=\frac{1}{\pi n!}\sum_{k=0}^n\binom{n}{k}\int_{-\infty}^{\infty}\frac{\sin y}{y}dyξ=πn!1k=0∑n(kn)∫−∞∞ysinydy
Now using a well know result that ∫−∞∞sinxxdx=π\displaystyle \int_{-\infty}^{\infty}\frac{\sin x}{x}dx=\pi∫−∞∞xsinxdx=π we get ξ=1πn!∑k=0n(nk)π\displaystyle \xi=\frac{1}{\pi n!}\sum_{k=0}^n\binom{n}{k}\piξ=πn!1k=0∑n(kn)π
Using the Binomial theorem we have that ∑k=0n(nk)=2n\displaystyle \sum_{k=0}^n\binom{n}{k}=2^nk=0∑n(kn)=2n and hence ξ=2nn!\displaystyle \xi=\frac{2^n}{n!}ξ=n!2n
Now recall that n=α+β−2\displaystyle n=\alpha+\beta-2n=α+β−2 and that Γ(n+1)=n!\displaystyle \Gamma(n+1)=n!Γ(n+1)=n!. Hence ξ=∫−∞∞dxΓ(α+x)Γ(β−x)=2α+β−2Γ(α+β−1)\displaystyle \xi=\int_{-\infty}^{\infty}\frac{dx}{\Gamma(\alpha +x)\Gamma(\beta -x)}=\frac{2^{\alpha+\beta-2}}{\Gamma(\alpha+\beta-1)}ξ=∫−∞∞Γ(α+x)Γ(β−x)dx=Γ(α+β−1)2α+β−2
Q.E.D\mathbf{\color{#20A900}{\text{Q.E.D}}}Q.E.D
Log in to reply
You have assumed that α+β−2\alpha + \beta - 2α+β−2 is a non negative integer, which is not necessarily true.
I wonder if it is possible to prove it without contour, well here is its solution, just put n=0n=0n=0 at the end. @Ishan Singh
I haven't tried the general question, but this special case does have an elementary solution.
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Let ξ=∫−∞∞Γ(α+x)Γ(β−x)dx Substitute α+x−1=u and then for convenience let α+β−2=n , hence we get ξ=∫−∞∞Γ(u+1)Γ(n+1−u)du
Now using that Γ(z+1)=zΓ(z) and similarly Γ(n+1−u)=Γ(1−u)k=0∏n(k−u)=(−1)nΓ(1−u)k=0∏n(u−k)
We get ξ=∫−∞∞Γ(u)Γ(1−u)k=0∏n(u−k)(−1)ndu
Now using the Euler's Reflection formula that Γ(u)Γ(1−u)=πcsc(πu) and the partial fraction decomposition as k=0∏n(u−k)1=k=0∑nu−kak for some ai∈R∀ i∈{0,1,⋯,n}. Computing explicitly we get ak=k!(n−k)!(−1)n−k. Using this and interchanging the summation and integral signs we get ξ=πn!1k=0∑n(−1)n(−1)n+k(kn)∫−∞∞u−ksin(πu)du
Now substituting u−k=t in the integral we get =πn!1k=0∑n(−1)k(kn)∫−∞∞tsin(πt+πk)dt
But sin(πt+πk)=(−1)ksin(πt). Using this alongwith the substitution πt=y in the integral we get that ξ=πn!1k=0∑n(kn)∫−∞∞ysinydy
Now using a well know result that ∫−∞∞xsinxdx=π we get ξ=πn!1k=0∑n(kn)π
Using the Binomial theorem we have that k=0∑n(kn)=2n and hence ξ=n!2n
Now recall that n=α+β−2 and that Γ(n+1)=n!. Hence ξ=∫−∞∞Γ(α+x)Γ(β−x)dx=Γ(α+β−1)2α+β−2
Q.E.D
Log in to reply
You have assumed that α+β−2 is a non negative integer, which is not necessarily true.
I wonder if it is possible to prove it without contour, well here is its solution, just put n=0 at the end. @Ishan Singh
Log in to reply
I haven't tried the general question, but this special case does have an elementary solution.