There are two triangles ABC and XYZ, ABC congruent to XYZ. XYZ is out side of ABC. Suppose D is mid point AX, E midpoint BY, and F midpoint CZ. Prove D, E, F is colinear.
This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
Without loss of generality, let triangle XYZ be rotated 180 degrees. We will be able to form a parallelogram AYXB for easier proving.
(This also work with other figures as long as one of the traingles is rotated 180 degrees.)
By coordinates:
Let B = (0,0), A = ((x(1), y(1)), C = (x(2), 0), Z = (x(3), y(1)), X = (x(4),0), and Y = (x(5), y(1)).
Suppose we find D, E, and F.
D = ([x(1) + x(4)]/2, y(1)/2)
E = (x(5)/2, y(1)/2)
F = ([x(3)+x(2)]/2, y(1)/2)
By distance formula:
DE = [x(1) + x(4) - x(5)]/2
EF = [x(5) - x(3) - x(2)]/2
DF = [x(3) + x(2) - x(1) - x(4)]/2
Note that the points D, E, and F are coinciding because the diagonals AX and BY share the same midpoint as well as the segments AX and CZ which implies that DE + EF + DF = 2DF = 0. By segment addition postulate, the points are collinear and at the same time coinciding.
P.S. I don't know how to type Latex. Also, I used this time the right correspondences compared to the earlier post.
It is because I can form a parallelogram which can be proven easier... If one of the triangles is rotated other than 180 degrees then the contradicting proof is done by the distance formula for the midpoints in which they are not collinear when rotated other than 180 degrees.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Without loss of generality, let triangle XYZ be rotated 180 degrees. We will be able to form a parallelogram AYXB for easier proving. (This also work with other figures as long as one of the traingles is rotated 180 degrees.)
By coordinates: Let B = (0,0), A = ((x(1), y(1)), C = (x(2), 0), Z = (x(3), y(1)), X = (x(4),0), and Y = (x(5), y(1)).
Suppose we find D, E, and F. D = ([x(1) + x(4)]/2, y(1)/2) E = (x(5)/2, y(1)/2) F = ([x(3)+x(2)]/2, y(1)/2)
By distance formula: DE = [x(1) + x(4) - x(5)]/2 EF = [x(5) - x(3) - x(2)]/2 DF = [x(3) + x(2) - x(1) - x(4)]/2
Note that the points D, E, and F are coinciding because the diagonals AX and BY share the same midpoint as well as the segments AX and CZ which implies that DE + EF + DF = 2DF = 0. By segment addition postulate, the points are collinear and at the same time coinciding.
P.S. I don't know how to type Latex. Also, I used this time the right correspondences compared to the earlier post.
Log in to reply
For other rotations except for 0 and 180 degree rotation (e.g. 90 degree rotation), this can be checked by distance formula.
Why you W.L.O.G rotated 1800?
Log in to reply
It is because I can form a parallelogram which can be proven easier... If one of the triangles is rotated other than 180 degrees then the contradicting proof is done by the distance formula for the midpoints in which they are not collinear when rotated other than 180 degrees.