A group is a set together with a function , which is denoted by satisfying the following properties (also known as the group axioms).
Group Axioms
1) Closure. For any , is also in .
2) Associativity. For any , we have .
3) Identity. There exists an , such that for any . We say that is an identity element of .
4) Inverse. For any , there exists a such that . We say that is an inverse of .
Although the associativity condition only specifies three elements, it can be generalized to arbitrarily many elements. For example, to show that , we apply the condition twice to obtain:
Thus, we can drop the parentheses altogether and speak of the product of elements of : , since it does not matter how we arrange the parentheses. Sometimes, we even drop the altogether and write it as . However, the order of the elements matters, since it is generally not true that for all . In fact, we say that the group G is abelian if for any , .
To specify a group, we have to state what the set is, along with the group operation. The following are common examples of some groups that you may have seen before.
1) , the set of rational numbers, with the group operation of addition.
2) , the set of non-zero real numbers, with the group operation of multiplication.
3) , the set of bijective functions , where , with the group operation of function composition.
4) , the set of integers , with group operation of addition modulo .
5) , the set of integers , with group operation of multiplication modulo .
Let be an element, with an inverse . For any , we define:
It is routine, but rather tedious, to show that the exponential laws of integers similarly hold.
For any and , then and .
The order of a group , is the number of elements in , which we denote by like in set notation.
1. Let be a group. Then the identity element is unique. Also, every element has a unique inverse, which we shall denote by .
Solution: Let and be identities. Then by definition, we get: .
Similarly, let and be inverses of . Then
Note that the inverse of the inverse of x is precisely x itself. In symbolic form, we get Furthermore, we can show that .
2. If have inverses respectively, what is the inverse of ?
Solution: The inverse of the product is given by . Indeed, we have and likewise, .
A simple way to remember this property, is to think about how you wear your socks and shoes. You first put on your socks (), and then you put on your shoes . At then end of the day, you have to take off your shoes , and then take off your socks . Hence . Trying to take off your socks while your shoes are on, is going to be very difficult.
3. [Cancellation Law]. Let be a group. If and , then . Likewise, if and , then .
Solution: For the first statement, the equation gives: , so and thus . For the second statement, multiply on the right.
4. What is the order of each of the 5 groups listed above?
Solution:
1) There are infinitely many elements. (In fact, there are countably many elements.)
2) There are infinitely many elements. (In fact, there are uncountably many elements.)
3) There are elements.
4) There are elements.
5) There are elements.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.