Half Tau Day is Fast Approaching!

Hello all! I hope you're all gearing up for \(\frac{\tau}{2} = \pi \) day! I am a giant proponent of \(\tau\), and you should be too. For those of you who don't know, \(\tau = 2\pi\). \(\tau\) is a much more natural circle constant, as a circle is, after all, defined by its radius, not its diameter. One can find an incredibly compelling argument for τ\tau in Michael Hartl's Tau Manifesto. I know I'll be spending Half Tau Day unwillingly participating in π\pi activities with my blissfully ignorant peers, who I will inevitably urge to join Brilliant and educate themselves about the marvels of τ\tau!

Have a safe and happy τ2\frac{\tau}{2} day!

#Geometry #Pi #Circles #Tau

Note by Ryan Tamburrino
6 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

I feel stupid for asking this but isn't π \pi day on 1414 March?

Siddhartha Srivastava - 6 years, 3 months ago

Log in to reply

Yeah! This π\pi day is special though, because it will be (in the American format of month/day/year) 3/14/153/14/15. τ\tau will have its revenge on 6/28/316/28/31!

Ryan Tamburrino - 6 years, 3 months ago

To be honest they are equally valid, as π\pi is better in some situations and τ\tau is better in others. For example: circumference = τ\taur may be easier to deal but then you end up with an area of: τ2\frac{\tau}{2}r2r^{2}. You may also look at it from a trigonometry point of view... all the trigonometric functions repeat themselves every τ\tau radians, but then when proving that ζ\zeta(2) = π26\frac{\pi^2}{6} you need π\pito obtain: sin(x)x=n=1(1(nπx)2)\frac{sin(x)}{x} = \displaystyle\prod_{n=1}^{\infty} (1-(\frac{n\pi }{x})^2) and the argument continues....

Curtis Clement - 6 years, 3 months ago

Log in to reply

I will concede a few small victories to π\pi, including that one that you mentioned regarding the ζ\zeta function. However, if you look at the Tau Manifesto, Hartl shows that area of a circle with τ\tau follows other quadratic forms of other formulas from physics. So, that 12\frac{1}{2} out in front isn't quite as unnatural as it seems.

Ryan Tamburrino - 6 years, 3 months ago

Log in to reply

Maybe there ought to be a friendly Tau vs pi debate

Curtis Clement - 6 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...