Srinivasa Ramanujan (22 December 1887 – 26 April 1920) was an Indian mathematician and autodidact.
1729 is the natural number following 1728 and preceding 1730. 1729 is known as the Hardy–Ramanujan number after a famous anecdote of the British mathematician G. H. Hardy regarding a visit to the hospital to see the Indian mathematician Srinivasa Ramanujan. In Hardy's words:
“ I remember once going to see him when he was ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. (instantly)"No," he replied, "it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways." The two different ways are these:
With almost no formal training in pure mathematics, made extraordinary contributions to mathematical analysis, number theory, infinite series, and continued fractions, Ramanujan developed his own mathematical research in isolation. As a result, he rediscovered known theorems in addition to producing new work. Ramanujan was said to be a natural genius by the English mathematician G. H. Hardy, in the same league as mathematicians such as Euler and Gauss.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
After reading about Ramanujan, I have become a fan of him. He was truly a genius.
In fact, 1729 is also special because it is the third Carmichael number, which can disprove Fermat's Little Theorem
Log in to reply
yeah you are right
Carmichael numbers are also great!!