Once in a while, you will forget about the boundary conditions. Today, I am going to be talking about the Time dependent Schrodinger Equation for a particle in a box as an example to show that boundary conditions really matter when solving certain equations. For those who aren't familiar with the Time dependent Schrodinger Equation, it follows: . The boundary conditions of the box are . We could solve the Schrodinger Equation using separation of variables so we get but if we forgot about the boundary conditions, we would get . We would also get different energy eigenvalues. For , we would get whereas, for , you would get that there are no certain energy eigenvalues. In conclusion, always remember to include boundary conditions in your courses such as differential equations and other courses. I am 12 and many people in my school really don't care about the conditions that are given anyways so that is why I am posting this.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
I use this for challenging questions but I am listed under 42 years old for some reason.