help

lim x->0 (cos(sinx)-cos(x))/x^4

#Math

Note by Selena Miller
6 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

try the series expansion for sinx and cosx or u may also differentiate the numerator and denominator at least four times( l' Hospital's rule) to arrive at an answer .. !

Ramesh Goenka - 6 years, 9 months ago

want an easier method please And expansion didn't work

Selena Miller - 6 years, 9 months ago

For small xx, sin(x)xx36 \large \sin (x) \approx x - \frac {x^3}{6} , and cos(x)1x22 \large \cos (x) \approx 1 - \frac {x^2}{2}

limx0cos(sinx)cos(x)x4=limx0cos(xx36)cos(x)x4=limx01(xx36)22(1x22)x4=limx0x2(xx36)22x4=16 \begin{aligned} \LARGE \lim_{x \to 0} \frac { \cos (\sin x ) - \cos (x) } {x^4} & = & \lim_{x \to 0} \frac { \cos \left ( x - \frac {x^3}{6} \right ) - \cos (x) } {x^4} \\ \LARGE & = & \lim_{x \to 0} \frac { 1 - \frac { \left ( x - \frac {x^3}{6} \right )^2 }{2} - \left (1 - \frac {x^2}{2} \right ) }{x^4} \\ \LARGE & = & \lim_{x \to 0} \frac {x^2 - \left ( x - \frac {x^3}{6} \right )^2 }{2x^4} = \boxed{ \frac {1}{6} } \\ \end{aligned}

Alternatively, recall that sum/difference to product identity cos(A)cos(B)=2sin(A+B2)sin(AB2) \cos (A) - \cos (B) = -2 \sin \left ( \frac {A+B}{2} \right ) \sin \left ( \frac {A-B}{2} \right )

And this time, for small xx, sin(x)x \sin (x) \approx x , apply L'hopital Rule

Let A=sin(x),B=xA = \sin (x), B = x , we have

limx0cos(sinx)cos(x)x4=limx02sin(sin(x)+x2)sin(sin(x)x2)x4=limx02(sin(x)+x2)(sin(x)x2)x4=limx0sin2(x)x22x4=limx0x2sin2(x)2x4 , Apply L’hopital Rule =limx02x2sin(x)cos(x)8x3=limx02xsin(2x)8x3 , Apply L’hopital Rule again =limx022cos(2x)24x2 , Apply L’hopital Rule again =limx04sin(2x)24(2x)=16 \begin{aligned} \LARGE \lim_{x \to 0} \frac { \cos (\sin x ) - \cos (x) } {x^4} & = & \lim_{x \to 0} \frac {-2 \sin \left ( \frac {\sin (x) + x}{2} \right ) \sin \left ( \frac {\sin (x) - x}{2} \right ) }{x^4} \\ \LARGE & = & \lim_{x \to 0} \frac {-2 \left ( \frac {\sin (x) + x}{2} \right ) \left ( \frac {\sin (x) - x}{2} \right ) }{x^4} \\ \LARGE & = & \lim_{x \to 0} \frac {\sin^2 (x) - x^2 }{-2x^4} \\ \LARGE & = & \lim_{x \to 0} \frac {x^2 - \sin^2 (x) }{2x^4} \space \text{, Apply L'hopital Rule } \\ \LARGE & = & \lim_{x \to 0} \frac {2x - 2 \sin (x) \cos(x) }{8x^3} \\ \LARGE & = & \lim_{x \to 0} \frac {2x - \sin (2x) }{8x^3} \space \text{, Apply L'hopital Rule again } \\ \LARGE & = & \lim_{x \to 0} \frac {2 - 2\cos (2x) }{24x^2} \space \text{, Apply L'hopital Rule again } \\ \LARGE & = & \lim_{x \to 0} \frac {4\sin (2x) }{24(2x)} = \boxed{ \frac {1}{6} } \\ \end{aligned}

Pi Han Goh - 6 years, 9 months ago
×

Problem Loading...

Note Loading...

Set Loading...