(1): Let x,yx,yx,y and zzz be real numbers such that x+y+z=1x+y+z=1x+y+z=1, find the maximum possible value of x(x+y)2(y+z)3(z+x)4x(x+y)^2 (y+z)^3 (z+x)^4 x(x+y)2(y+z)3(z+x)4.
(2): Let R+\mathbb R^+ R+ be the set of all positive real numbers. Find all the functions f:R+→R+f: \mathbb R^+ \to \mathbb R^+ f:R+→R+ satisfying f(xf(y))=f(xy)+xf(x f(y)) = f(xy) + x f(xf(y))=f(xy)+x.
Note by Naitik Sanghavi 4 years, 10 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
As far as the second problem is concerned: Let P(x,y)be the assertion f(xf(y))=f(xy)+x(∗)Then we have: P(y,x)⇒f(yf(x))=f(xy)+y(1)P(1,x)⇒f(f(x))=f(x)+1(2)P(f(x),y)⇒f(f(x)f(y))=f(f(x)y)+f(x)⇒(1)f(f(x)f(y))=f(xy)+y+f(x)(3)P(f(y),x)⇒f(f(y)f(x))=f(f(y)x)+f(y)⇒(∗)f(f(y)f(x))=f(xy)+x+f(y)(4)(3)−(4)⇒0=y−x+f(x)−f(y)⇔f(x)−x=f(y)−y∀x,y∈R+Thus we can say that (f(x)−x) is constant for all values of x, hencef(x)−x=k⇔f(x)=x+k(5) for some real k(5)⟹x→f(x)f(f(x))=f(x)+k⇒(2)f(x)+1=f(x)+k⇔k=1(6).Therefore (5)⇒(6)f(x)=x+1\text{Let } P(x,y) \text{be the assertion } f(xf(y))=f(xy)+x \quad (*) \quad \text{Then we have: } \\ P(y,x) \Rightarrow f(yf(x))=f(xy)+y \quad (1) \\ P(1,x) \Rightarrow f(f(x))=f(x)+1 \quad (2) \\ P(f(x),y) \Rightarrow f(f(x)f(y))=f(f(x)y)+f(x) \stackrel{(1)}{\Rightarrow}f(f(x)f(y))=f(xy)+y+f(x) \quad (3) \\ P(f(y),x) \Rightarrow f(f(y)f(x))=f(f(y)x)+f(y) \stackrel{(*)}{\Rightarrow} f(f(y)f(x))=f(xy)+x+f(y) \quad (4) \\ (3)-(4) \Rightarrow 0=y-x+f(x)-f(y) \Leftrightarrow f(x)-x=f(y)-y \quad \forall x,y \in \mathbb{R^+} \\ \text{Thus we can say that } (f(x)-x) \text{ is constant for all values of x, hence} \\ f(x)-x=k \Leftrightarrow f(x)=x+k \quad (5) \quad \text{ for some real } k \\ (5) \stackrel{x\rightarrow f(x)}{\Longrightarrow} f(f(x))=f(x)+k \stackrel{(2)}{\Rightarrow} f(x)+1=f(x)+k \Leftrightarrow k=1 \quad (6).\\ \text{Therefore } (5)\stackrel{(6)}{\Rightarrow} \boxed{f(x)=x+1} Let P(x,y)be the assertion f(xf(y))=f(xy)+x(∗)Then we have: P(y,x)⇒f(yf(x))=f(xy)+y(1)P(1,x)⇒f(f(x))=f(x)+1(2)P(f(x),y)⇒f(f(x)f(y))=f(f(x)y)+f(x)⇒(1)f(f(x)f(y))=f(xy)+y+f(x)(3)P(f(y),x)⇒f(f(y)f(x))=f(f(y)x)+f(y)⇒(∗)f(f(y)f(x))=f(xy)+x+f(y)(4)(3)−(4)⇒0=y−x+f(x)−f(y)⇔f(x)−x=f(y)−y∀x,y∈R+Thus we can say that (f(x)−x) is constant for all values of x, hencef(x)−x=k⇔f(x)=x+k(5) for some real k(5)⟹x→f(x)f(f(x))=f(x)+k⇒(2)f(x)+1=f(x)+k⇔k=1(6).Therefore (5)⇒(6)f(x)=x+1
Log in to reply
In case you are not familiar with this solution I post a solution using that f(x)f(x)f(x) is 1-1. Let P(x,y) be the assertion f(xf(y))=f(xy)+x(∗) thus:P(y,x)⇒f(yf(x))=f(xy)+y(1)P(f(x),y)⇒f(f(x)f(y))=f(yf(x))+f(x)⇒(1)f(f(x)f(y))=f(xy)+f(x)+y⇒x=1f(f(1)f(y))=f(y)+f(1)+y⇔f(f(1)f(x))−f(x)−f(1)=x(2)We will prove that f(x) is 1−1:f(x1)=f(x2)⇔−f(x1)−f(1)=−f(x2)−f(1)(3)f(x1)=f(x2)⇔f(1)f(x1)=f(1)f(x2)⇔f(f(1)f(x1))=f(f(1)f(x2))(4)(3)+(4)⇒f(f(1)f(x1))−f(x1)−f(1)=f(f(1)f(x2))−f(x2)−f(1)⇒(2)x1=x2Thus f−1(x) exists P(1,x)⇒f(f(x))=f(x)+1(5)P(f(x)f(y),y)⇒f(f(x))=f(f(x)f(y)y)+f(x)f(y)⇒(5)f(x)+1=f(f(x)f(y)y)+f(x)f(y)⇒y=1f(f(x)f(1))−f(x)−1=−f(x)f(1)⟹x→f−1(xf(1))f(x)−f(1)x−1=−x⇔f(x)=(f(1)−1)x+1(6)⇒x→f(x)f(f(x))=(f(1)−1)f(x)+1⇒(5)f(x)+1=(f(1)−1)f(x)+1⇒f(x)=ww=(f(1)−1)w⇔(f(1)−2)w=0∀w∈R+Thus it should be f(1)−2=0⇔f(1)=2(7)Therefore (6)⇒(7)f(x)=x+1\text{Let } P(x,y) \text{ be the assertion } f(xf(y))=f(xy)+x \quad (*) \text{ thus:} \\ P(y,x) \Rightarrow f(yf(x))=f(xy)+y \quad (1) \\ P(f(x),y) \Rightarrow f(f(x)f(y))=f(yf(x))+f(x) \stackrel{(1)}{\Rightarrow} f(f(x)f(y))=f(xy)+f(x)+y \\ \stackrel{x=1}{\Rightarrow} f(f(1)f(y))=f(y)+f(1)+y \Leftrightarrow f(f(1)f(x))-f(x)-f(1)=x \quad (2) \\ \text{We will prove that } f(x) \text{ is } 1-1 \text{:} \\ f(x_1)=f(x_2) \Leftrightarrow -f(x_1)-f(1)=-f(x_2)-f(1) \quad (3) \\ f(x_1)=f(x_2) \Leftrightarrow f(1)f(x_1)=f(1)f(x_2) \Leftrightarrow f(f(1)f(x_1))=f(f(1)f(x_2)) \quad (4) \\ (3)+(4) \Rightarrow f(f(1)f(x_1))-f(x_1)-f(1)=f(f(1)f(x_2))-f(x_2)-f(1) \\ \stackrel{(2)}{\Rightarrow} x_1=x_2 \quad \text{Thus } f^{-1}(x) \text{ exists } \\ P(1,x) \Rightarrow f(f(x))=f(x)+1 \quad (5) \\ P(\frac{f(x)}{f(y)},y) \Rightarrow f(f(x))=f(\frac{f(x)}{f(y)}y)+\frac{f(x)}{f(y)} \\ \stackrel{(5)}{\Rightarrow} f(x)+1=f(\frac{f(x)}{f(y)}y)+\frac{f(x)}{f(y)} \\ \stackrel{y=1}{\Rightarrow} f(\frac{f(x)}{f(1)})-f(x)-1=-\frac{f(x)}{f(1)} \\ \stackrel{x\rightarrow f^{-1}(xf(1))}{\Longrightarrow} f(x)-f(1)x-1=-x \\ \Leftrightarrow f(x)=(f(1)-1)x+1 \quad (6) \\ \stackrel{x\rightarrow f(x)}{\Rightarrow} f(f(x))=(f(1)-1)f(x)+1 \stackrel{(5)}{\Rightarrow} f(x)+1=(f(1)-1)f(x)+1 \\ \stackrel{f(x)=w}{\Rightarrow} w=(f(1)-1)w \Leftrightarrow (f(1)-2)w=0 \quad \forall w \in \mathbb{R^+} \\ \text{Thus it should be } f(1)-2=0 \Leftrightarrow f(1)=2 \quad (7) \\ \text{Therefore } (6) \stackrel{(7)}{\Rightarrow} \boxed{f(x)=x+1}Let P(x,y) be the assertion f(xf(y))=f(xy)+x(∗) thus:P(y,x)⇒f(yf(x))=f(xy)+y(1)P(f(x),y)⇒f(f(x)f(y))=f(yf(x))+f(x)⇒(1)f(f(x)f(y))=f(xy)+f(x)+y⇒x=1f(f(1)f(y))=f(y)+f(1)+y⇔f(f(1)f(x))−f(x)−f(1)=x(2)We will prove that f(x) is 1−1:f(x1)=f(x2)⇔−f(x1)−f(1)=−f(x2)−f(1)(3)f(x1)=f(x2)⇔f(1)f(x1)=f(1)f(x2)⇔f(f(1)f(x1))=f(f(1)f(x2))(4)(3)+(4)⇒f(f(1)f(x1))−f(x1)−f(1)=f(f(1)f(x2))−f(x2)−f(1)⇒(2)x1=x2Thus f−1(x) exists P(1,x)⇒f(f(x))=f(x)+1(5)P(f(y)f(x),y)⇒f(f(x))=f(f(y)f(x)y)+f(y)f(x)⇒(5)f(x)+1=f(f(y)f(x)y)+f(y)f(x)⇒y=1f(f(1)f(x))−f(x)−1=−f(1)f(x)⟹x→f−1(xf(1))f(x)−f(1)x−1=−x⇔f(x)=(f(1)−1)x+1(6)⇒x→f(x)f(f(x))=(f(1)−1)f(x)+1⇒(5)f(x)+1=(f(1)−1)f(x)+1⇒f(x)=ww=(f(1)−1)w⇔(f(1)−2)w=0∀w∈R+Thus it should be f(1)−2=0⇔f(1)=2(7)Therefore (6)⇒(7)f(x)=x+1
Thanks much!!
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
As far as the second problem is concerned: Let P(x,y)be the assertion f(xf(y))=f(xy)+x(∗)Then we have: P(y,x)⇒f(yf(x))=f(xy)+y(1)P(1,x)⇒f(f(x))=f(x)+1(2)P(f(x),y)⇒f(f(x)f(y))=f(f(x)y)+f(x)⇒(1)f(f(x)f(y))=f(xy)+y+f(x)(3)P(f(y),x)⇒f(f(y)f(x))=f(f(y)x)+f(y)⇒(∗)f(f(y)f(x))=f(xy)+x+f(y)(4)(3)−(4)⇒0=y−x+f(x)−f(y)⇔f(x)−x=f(y)−y∀x,y∈R+Thus we can say that (f(x)−x) is constant for all values of x, hencef(x)−x=k⇔f(x)=x+k(5) for some real k(5)⟹x→f(x)f(f(x))=f(x)+k⇒(2)f(x)+1=f(x)+k⇔k=1(6).Therefore (5)⇒(6)f(x)=x+1
Log in to reply
In case you are not familiar with this solution I post a solution using that f(x) is 1-1. Let P(x,y) be the assertion f(xf(y))=f(xy)+x(∗) thus:P(y,x)⇒f(yf(x))=f(xy)+y(1)P(f(x),y)⇒f(f(x)f(y))=f(yf(x))+f(x)⇒(1)f(f(x)f(y))=f(xy)+f(x)+y⇒x=1f(f(1)f(y))=f(y)+f(1)+y⇔f(f(1)f(x))−f(x)−f(1)=x(2)We will prove that f(x) is 1−1:f(x1)=f(x2)⇔−f(x1)−f(1)=−f(x2)−f(1)(3)f(x1)=f(x2)⇔f(1)f(x1)=f(1)f(x2)⇔f(f(1)f(x1))=f(f(1)f(x2))(4)(3)+(4)⇒f(f(1)f(x1))−f(x1)−f(1)=f(f(1)f(x2))−f(x2)−f(1)⇒(2)x1=x2Thus f−1(x) exists P(1,x)⇒f(f(x))=f(x)+1(5)P(f(y)f(x),y)⇒f(f(x))=f(f(y)f(x)y)+f(y)f(x)⇒(5)f(x)+1=f(f(y)f(x)y)+f(y)f(x)⇒y=1f(f(1)f(x))−f(x)−1=−f(1)f(x)⟹x→f−1(xf(1))f(x)−f(1)x−1=−x⇔f(x)=(f(1)−1)x+1(6)⇒x→f(x)f(f(x))=(f(1)−1)f(x)+1⇒(5)f(x)+1=(f(1)−1)f(x)+1⇒f(x)=ww=(f(1)−1)w⇔(f(1)−2)w=0∀w∈R+Thus it should be f(1)−2=0⇔f(1)=2(7)Therefore (6)⇒(7)f(x)=x+1
Log in to reply
Thanks much!!