Help!

(1): Let x,yx,y and zz be real numbers such that x+y+z=1x+y+z=1, find the maximum possible value of x(x+y)2(y+z)3(z+x)4x(x+y)^2 (y+z)^3 (z+x)^4 .

(2): Let R+\mathbb R^+ be the set of all positive real numbers. Find all the functions f:R+R+f: \mathbb R^+ \to \mathbb R^+ satisfying f(xf(y))=f(xy)+xf(x f(y)) = f(xy) + x .

#Algebra

Note by Naitik Sanghavi
4 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

As far as the second problem is concerned: Let P(x,y)be the assertion f(xf(y))=f(xy)+x()Then we have: P(y,x)f(yf(x))=f(xy)+y(1)P(1,x)f(f(x))=f(x)+1(2)P(f(x),y)f(f(x)f(y))=f(f(x)y)+f(x)(1)f(f(x)f(y))=f(xy)+y+f(x)(3)P(f(y),x)f(f(y)f(x))=f(f(y)x)+f(y)()f(f(y)f(x))=f(xy)+x+f(y)(4)(3)(4)0=yx+f(x)f(y)f(x)x=f(y)yx,yR+Thus we can say that (f(x)x) is constant for all values of x, hencef(x)x=kf(x)=x+k(5) for some real k(5)xf(x)f(f(x))=f(x)+k(2)f(x)+1=f(x)+kk=1(6).Therefore (5)(6)f(x)=x+1\text{Let } P(x,y) \text{be the assertion } f(xf(y))=f(xy)+x \quad (*) \quad \text{Then we have: } \\ P(y,x) \Rightarrow f(yf(x))=f(xy)+y \quad (1) \\ P(1,x) \Rightarrow f(f(x))=f(x)+1 \quad (2) \\ P(f(x),y) \Rightarrow f(f(x)f(y))=f(f(x)y)+f(x) \stackrel{(1)}{\Rightarrow}f(f(x)f(y))=f(xy)+y+f(x) \quad (3) \\ P(f(y),x) \Rightarrow f(f(y)f(x))=f(f(y)x)+f(y) \stackrel{(*)}{\Rightarrow} f(f(y)f(x))=f(xy)+x+f(y) \quad (4) \\ (3)-(4) \Rightarrow 0=y-x+f(x)-f(y) \Leftrightarrow f(x)-x=f(y)-y \quad \forall x,y \in \mathbb{R^+} \\ \text{Thus we can say that } (f(x)-x) \text{ is constant for all values of x, hence} \\ f(x)-x=k \Leftrightarrow f(x)=x+k \quad (5) \quad \text{ for some real } k \\ (5) \stackrel{x\rightarrow f(x)}{\Longrightarrow} f(f(x))=f(x)+k \stackrel{(2)}{\Rightarrow} f(x)+1=f(x)+k \Leftrightarrow k=1 \quad (6).\\ \text{Therefore } (5)\stackrel{(6)}{\Rightarrow} \boxed{f(x)=x+1}

Chris Galanis - 4 years, 10 months ago

Log in to reply

In case you are not familiar with this solution I post a solution using that f(x)f(x) is 1-1. Let P(x,y) be the assertion f(xf(y))=f(xy)+x() thus:P(y,x)f(yf(x))=f(xy)+y(1)P(f(x),y)f(f(x)f(y))=f(yf(x))+f(x)(1)f(f(x)f(y))=f(xy)+f(x)+yx=1f(f(1)f(y))=f(y)+f(1)+yf(f(1)f(x))f(x)f(1)=x(2)We will prove that f(x) is 11:f(x1)=f(x2)f(x1)f(1)=f(x2)f(1)(3)f(x1)=f(x2)f(1)f(x1)=f(1)f(x2)f(f(1)f(x1))=f(f(1)f(x2))(4)(3)+(4)f(f(1)f(x1))f(x1)f(1)=f(f(1)f(x2))f(x2)f(1)(2)x1=x2Thus f1(x) exists P(1,x)f(f(x))=f(x)+1(5)P(f(x)f(y),y)f(f(x))=f(f(x)f(y)y)+f(x)f(y)(5)f(x)+1=f(f(x)f(y)y)+f(x)f(y)y=1f(f(x)f(1))f(x)1=f(x)f(1)xf1(xf(1))f(x)f(1)x1=xf(x)=(f(1)1)x+1(6)xf(x)f(f(x))=(f(1)1)f(x)+1(5)f(x)+1=(f(1)1)f(x)+1f(x)=ww=(f(1)1)w(f(1)2)w=0wR+Thus it should be f(1)2=0f(1)=2(7)Therefore (6)(7)f(x)=x+1\text{Let } P(x,y) \text{ be the assertion } f(xf(y))=f(xy)+x \quad (*) \text{ thus:} \\ P(y,x) \Rightarrow f(yf(x))=f(xy)+y \quad (1) \\ P(f(x),y) \Rightarrow f(f(x)f(y))=f(yf(x))+f(x) \stackrel{(1)}{\Rightarrow} f(f(x)f(y))=f(xy)+f(x)+y \\ \stackrel{x=1}{\Rightarrow} f(f(1)f(y))=f(y)+f(1)+y \Leftrightarrow f(f(1)f(x))-f(x)-f(1)=x \quad (2) \\ \text{We will prove that } f(x) \text{ is } 1-1 \text{:} \\ f(x_1)=f(x_2) \Leftrightarrow -f(x_1)-f(1)=-f(x_2)-f(1) \quad (3) \\ f(x_1)=f(x_2) \Leftrightarrow f(1)f(x_1)=f(1)f(x_2) \Leftrightarrow f(f(1)f(x_1))=f(f(1)f(x_2)) \quad (4) \\ (3)+(4) \Rightarrow f(f(1)f(x_1))-f(x_1)-f(1)=f(f(1)f(x_2))-f(x_2)-f(1) \\ \stackrel{(2)}{\Rightarrow} x_1=x_2 \quad \text{Thus } f^{-1}(x) \text{ exists } \\ P(1,x) \Rightarrow f(f(x))=f(x)+1 \quad (5) \\ P(\frac{f(x)}{f(y)},y) \Rightarrow f(f(x))=f(\frac{f(x)}{f(y)}y)+\frac{f(x)}{f(y)} \\ \stackrel{(5)}{\Rightarrow} f(x)+1=f(\frac{f(x)}{f(y)}y)+\frac{f(x)}{f(y)} \\ \stackrel{y=1}{\Rightarrow} f(\frac{f(x)}{f(1)})-f(x)-1=-\frac{f(x)}{f(1)} \\ \stackrel{x\rightarrow f^{-1}(xf(1))}{\Longrightarrow} f(x)-f(1)x-1=-x \\ \Leftrightarrow f(x)=(f(1)-1)x+1 \quad (6) \\ \stackrel{x\rightarrow f(x)}{\Rightarrow} f(f(x))=(f(1)-1)f(x)+1 \stackrel{(5)}{\Rightarrow} f(x)+1=(f(1)-1)f(x)+1 \\ \stackrel{f(x)=w}{\Rightarrow} w=(f(1)-1)w \Leftrightarrow (f(1)-2)w=0 \quad \forall w \in \mathbb{R^+} \\ \text{Thus it should be } f(1)-2=0 \Leftrightarrow f(1)=2 \quad (7) \\ \text{Therefore } (6) \stackrel{(7)}{\Rightarrow} \boxed{f(x)=x+1}

Chris Galanis - 4 years, 10 months ago

Log in to reply

Thanks much!!

naitik sanghavi - 4 years, 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...