In a x grid composed of vertical lines and horizontal lines; a beetle is moving from one intersecting point to another in one step. If the beetle moves from the bottom left corner to the top right corner within steps, and it never returned to the same intersecting point, what is the number of different paths the beetle can take?
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
@Zakir Husain I got 36 for exactly 8 steps, I think I might have over counted, is there any mistake you see in my approach?
There are total 36 paths I found it using a Python program
Log in to reply
That I think would be for exactly 8 steps, including 6 steps will make it 36
Following are sequence of movements: (0,0)→(1,0)→(2,0)→(3,0)→(3,1)→(3,2)→(2,2)→(2,3)→(3,3) (0,0)→(1,0)→(2,0)→(3,0)→(3,1)→(2,1)→(2,2)→(3,2)→(3,3) (0,0)→(1,0)→(2,0)→(3,0)→(3,1)→(2,1)→(2,2)→(2,3)→(3,3) (0,0)→(1,0)→(2,0)→(2,1)→(3,1)→(3,2)→(2,2)→(2,3)→(3,3) (0,0)→(1,0)→(2,0)→(2,1)→(2,2)→(1,2)→(1,3)→(2,3)→(3,3) (0,0)→(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→(3,2)→(3,3) (0,0)→(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→(2,3)→(3,3) (0,0)→(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(1,3)→(2,3)→(3,3) (0,0)→(1,0)→(1,1)→(2,1)→(3,1)→(3,2)→(2,2)→(2,3)→(3,3) (0,0)→(1,0)→(1,1)→(2,1)→(2,2)→(1,2)→(1,3)→(2,3)→(3,3) (0,0)→(1,0)→(1,1)→(2,1)→(2,0)→(3,0)→(3,1)→(3,2)→(3,3) (0,0)→(1,0)→(1,1)→(1,2)→(2,2)→(2,1)→(3,1)→(3,2)→(3,3) (0,0)→(1,0)→(1,1)→(1,2)→(1,3)→(2,3)→(2,2)→(3,2)→(3,3) (0,0)→(1,0)→(1,1)→(1,2)→(0,2)→(0,3)→(1,3)→(2,3)→(3,3) (0,0)→(1,0)→(1,1)→(0,1)→(0,2)→(1,2)→(2,2)→(3,2)→(3,3) (0,0)→(1,0)→(1,1)→(0,1)→(0,2)→(1,2)→(2,2)→(2,3)→(3,3) (0,0)→(1,0)→(1,1)→(0,1)→(0,2)→(1,2)→(1,3)→(2,3)→(3,3) (0,0)→(1,0)→(1,1)→(0,1)→(0,2)→(0,3)→(1,3)→(2,3)→(3,3) (0,0)→(0,1)→(1,1)→(2,1)→(3,1)→(3,2)→(2,2)→(2,3)→(3,3) (0,0)→(0,1)→(1,1)→(2,1)→(2,2)→(1,2)→(1,3)→(2,3)→(3,3) (0,0)→(0,1)→(1,1)→(2,1)→(2,0)→(3,0)→(3,1)→(3,2)→(3,3) (0,0)→(0,1)→(1,1)→(1,2)→(2,2)→(2,1)→(3,1)→(3,2)→(3,3) (0,0)→(0,1)→(1,1)→(1,2)→(1,3)→(2,3)→(2,2)→(3,2)→(3,3) (0,0)→(0,1)→(1,1)→(1,2)→(0,2)→(0,3)→(1,3)→(2,3)→(3,3) (0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(3,0)→(3,1)→(3,2)→(3,3) (0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(2,1)→(3,1)→(3,2)→(3,3) (0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(2,1)→(2,2)→(3,2)→(3,3) (0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(2,1)→(2,2)→(2,3)→(3,3) (0,0)→(0,1)→(0,2)→(1,2)→(2,2)→(2,1)→(3,1)→(3,2)→(3,3) (0,0)→(0,1)→(0,2)→(1,2)→(1,3)→(2,3)→(2,2)→(3,2)→(3,3) (0,0)→(0,1)→(0,2)→(1,2)→(1,1)→(2,1)→(3,1)→(3,2)→(3,3) (0,0)→(0,1)→(0,2)→(1,2)→(1,1)→(2,1)→(2,2)→(3,2)→(3,3) (0,0)→(0,1)→(0,2)→(1,2)→(1,1)→(2,1)→(2,2)→(2,3)→(3,3) (0,0)→(0,1)→(0,2)→(0,3)→(1,3)→(2,3)→(2,2)→(3,2)→(3,3) (0,0)→(0,1)→(0,2)→(0,3)→(1,3)→(1,2)→(2,2)→(3,2)→(3,3) (0,0)→(0,1)→(0,2)→(0,3)→(1,3)→(1,2)→(2,2)→(2,3)→(3,3)
Log in to reply
(0,0)→(0,1)→(0,0)→(1,0)→(1,1)→(1,2)→(1,3)→(2,3)→(3,3)
This path isn’t allowed because we come back to origin again, I think so without these ones there should be 36 paths with length 8
Log in to reply
OIC found new mistake ;)
Edited!
I don’t see any path like this
(0,0)➝(0,1)➝(1,1)➝…
One example of a complete path not present
(0,0)➝(0,1)➝(1,1)➝(1,2)➝(2,2)➝(2,1)➝(3,1)➝(3,2)➝(3,3)
(I do silly mistakes all the time, I might have not understood the question too)
Log in to reply
There was a problem in my program, I fixed it and found 56 paths
@Jeff Giff Now I edited My comment