Here's a problem i am not being able to solve:
\(prove\) \(that\) limx→π2(11cos2x+21cos2x+...........+n1cos2x)cos2x=n\large{lim_{x\to \frac{\pi}{2}}}\LARGE{(1^{\frac{1}{cos^{2}x}}+2^{\frac{1}{cos^{2}x}}+...........+n^{\frac{1}{cos^{2}x}})^{cos^{2}x}=n}limx→2π(1cos2x1+2cos2x1+...........+ncos2x1)cos2x=n
\(prove\) \(that\)
limx→π2(11cos2x+21cos2x+...........+n1cos2x)cos2x=n\large{lim_{x\to \frac{\pi}{2}}}\LARGE{(1^{\frac{1}{cos^{2}x}}+2^{\frac{1}{cos^{2}x}}+...........+n^{\frac{1}{cos^{2}x}})^{cos^{2}x}=n}limx→2π(1cos2x1+2cos2x1+...........+ncos2x1)cos2x=n
Please help
Note by Aritra Jana 6 years, 6 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
To prove :
limx→π2(11cos2x+21cos2x+...........+n1cos2x)cos2x=n\displaystyle \large{lim_{x\to \frac{\pi}{2}}}\LARGE{(1^{\frac{1}{cos^{2}x}}+2^{\frac{1}{cos^{2}x}}+...........+n^{\frac{1}{cos^{2}x}})^{cos^{2}x}=n}limx→2π(1cos2x1+2cos2x1+...........+ncos2x1)cos2x=n
Let y=1cos2xy=\frac{1}{cos^2x}y=cos2x1 . As x→π2,y→∞x\to \frac{\pi}{2}, y\to \inftyx→2π,y→∞.
Therefore , limit=Limy→∞(1y+2y+3y+....+ny)1y∞0 formlimit=\displaystyle Lim_{y\to \infty} (1^y+2^y+3^y+....+n^y)^{\frac{1}{y}} \quad \quad \quad \infty^0 \ form limit=Limy→∞(1y+2y+3y+....+ny)y1∞0 form =(ny)1y[(1n)y+(2n)y+(3n)y+......+(n−1n)y+1]1y\quad \quad \quad = (n^y)^{\frac{1}{y}} \left[ \left(\frac{1}{n} \right)^y+ \left(\frac{2}{n} \right)^y+ \left(\frac{3}{n} \right)^y+......+ \left(\frac{n-1}{n} \right)^y+1 \right]^{\frac{1}{y}}=(ny)y1[(n1)y+(n2)y+(n3)y+......+(nn−1)y+1]y1 =n.[(1n)y+(2n)y+(3n)y+......+(n−1n)y+1]1y \quad \quad \quad = n.\left[ \left(\frac{1}{n} \right)^y+ \left(\frac{2}{n} \right)^y+ \left(\frac{3}{n} \right)^y+......+ \left(\frac{n-1}{n} \right)^y+1 \right]^{\frac{1}{y}}=n.[(n1)y+(n2)y+(n3)y+......+(nn−1)y+1]y1 =n.(1)0=n\quad \quad \quad =n . (1)^0 =\boxed{n}=n.(1)0=n
Enjoy @Aritra Jana !
Log in to reply
ohhh.. silly me! i forgot to consider that each of in\frac{i}{n}ni for i≤n−1i≤n-1i≤n−1 is less than 111!!
making limy→∞(in)y=0\lim_{y\to\infty}(\frac{i}{n})^{y}=0limy→∞(ni)y=0
anyways. thanks a lot for replying :D
@Sandeep Bhardwaj @Sanjeet Raria @Parth Lohomi @Calvin Lin @Mursalin Habib @megh choksi @Michael Mendrin @Satvik Golechha @Ronak Agarwal @Sean Ty @Chew-Seong Cheong @Alan Enrique Ontiveros Salazar @Joel Tan .
help? please?
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
To prove :
Let y=cos2x1 . As x→2π,y→∞.
Therefore , limit=Limy→∞(1y+2y+3y+....+ny)y1∞0 form =(ny)y1[(n1)y+(n2)y+(n3)y+......+(nn−1)y+1]y1 =n.[(n1)y+(n2)y+(n3)y+......+(nn−1)y+1]y1 =n.(1)0=n
Enjoy @Aritra Jana !
Log in to reply
ohhh.. silly me! i forgot to consider that each of ni for i≤n−1 is less than 1!!
making limy→∞(ni)y=0
anyways. thanks a lot for replying :D
@Sandeep Bhardwaj @Sanjeet Raria @Parth Lohomi @Calvin Lin @Mursalin Habib @megh choksi @Michael Mendrin @Satvik Golechha @Ronak Agarwal @Sean Ty @Chew-Seong Cheong @Alan Enrique Ontiveros Salazar @Joel Tan .
help? please?