This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
ok. multiply both sides by20xy20(x+y)=xy
change (x,y)→(a,b)ab−20(a+b)+20=20(a−20)(b−20)=20
notice how only a=k20,b=k220 would yield positive integer answers. we check (k−1)(k2−1)20=20⟹k=2,k1=2⟹x=80,y=80
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
ok. multiply both sides by20xy 20(x+y)=xy change (x,y)→(a,b) ab−20(a+b)+20=20(a−20)(b−20)=20 notice how only a=k20,b=k220 would yield positive integer answers. we check (k−1)(k2−1)20=20⟹k=2,k1=2⟹x=80,y=80
Log in to reply
I think that there is one more solution pair, namely (x,y)=(45,180), as
451+1801=351+651=(31+61)51=251=201.
My approach was to note that as 20=25 we must have x=5m2 and y=5n2 for some positive integers m,n both greater than 2, yielding the equation
m1+n1=21⟹2m+2n=mn⟹mn−2m−2n=0⟹(m−2)(n−2)=4.
As 4=2∗2=1∗4 we can either have (m,n)=(4,4) or (m,n)=(3,6), the former of which yields your solution and the latter my additional solution.
Solve for x: 1/sqrt(x)+1/sqrt(y) = 1/(2 sqrt(5)) 1/(2 sqrt(5)) = 1/(2 sqrt(5)): 1/sqrt(x)+1/sqrt(y) = 1/(2 sqrt(5)) Bring 1/sqrt(x)+1/sqrt(y) together using the common denominator sqrt(x) sqrt(y): (sqrt(x)+sqrt(y))/(sqrt(x) sqrt(y)) = 1/(2 sqrt(5)) Cross multiply: 2 sqrt(5) (sqrt(x)+sqrt(y)) = sqrt(x) sqrt(y) 2 sqrt(5) (sqrt(x)+sqrt(y)) = sqrt(x) sqrt(y) is equivalent to sqrt(x) sqrt(y) = 2 sqrt(5) (sqrt(x)+sqrt(y)): sqrt(x) sqrt(y) = 2 sqrt(5) (sqrt(x)+sqrt(y)) Subtract 2 sqrt(5) (sqrt(x)+sqrt(y)) from both sides: sqrt(x) sqrt(y)-2 sqrt(5) (sqrt(x)+sqrt(y)) = 0 sqrt(x) sqrt(y)-2 sqrt(5) (sqrt(x)+sqrt(y)) = sqrt(x) (sqrt(y)-2 sqrt(5))-2 sqrt(5) sqrt(y): sqrt(x) (sqrt(y)-2 sqrt(5))-2 sqrt(5) sqrt(y) = 0 Add 2 sqrt(5) sqrt(y) to both sides: sqrt(x) (sqrt(y)-2 sqrt(5)) = 2 sqrt(5) sqrt(y) Divide both sides by sqrt(y)-2 sqrt(5): sqrt(x) = (2 sqrt(5) sqrt(y))/(sqrt(y)-2 sqrt(5)) Raise both sides to the power of two: Answer: x = (20 y)/(sqrt(y)-2 sqrt(5))^2
pls help me.If w is one of the root of x2+x+2.find w10+w5+3
find the value of x/y if (3/√y) - (1/√x) = 2/(√x + √y)