My teacher gave me a problem. Let 1+4+10+20+35+..........+n=an3−bn2+cn−d1+4+10+20+35+..........+n=an^3-bn^2+cn-d1+4+10+20+35+..........+n=an3−bn2+cn−d. If ba+dc=ef\frac{b}{a}+ \frac{d}{c}= \frac{e}{f}ab+cd=fe and gcd(e,f)=1gcd(e,f)=1gcd(e,f)=1. What is the value of gcd(e+f,171)gcd(e+f,171)gcd(e+f,171)?
Note by Fatin Farhan 7 years, 7 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
My answer is gcd(e + f, 171) = 1.
Solution: First, we must know that 1, 4, 10, 20, 35, ... form a kind of sequence. How do I know this? The sequence has a common difference in the third iteration or third operation of finding their common difference. (Sorry, I don't know how to type in Latex so I have to save time typing instead of typing and adjusting the texts). This sequence is ruled by the polynomial P(n) = (1/6) n^3 + (1/2) n^2 + (1/3) n.
Now to attack the question, since we have a sum of this sequence, therefore we have to sum up P(n). (Sorry again for cheating by using the formulas, I don't have much knowledge and mastery of Abel's Formula for Derivation.)
Since summation of n = (1/2)(n)(n+1) Summation of n^2 = (1/6)(n)(n+1)(2n+1) Summation of n^3 = ((1/2)(n)(n+1))^2
To simplify this up, Summation of P(n) = (1/24)(n^4 + 6 n^3 + 11 n^2 + 6 n) Equating this to an^3-bn^2+cn-d, we have to make equivalences since the summation of P(n) has degree of 4 while the given has 3.
This will yield: a = n/24 b = -n/4 c = 11n/24 d = -n/4 And checking these values will be equivalent to P(n).
Now to evaluate b/a+d/c=e/f (-n/4)(24/n) + (-n/4)(24/11n) = e/f e/f = -72/11 gcd (-72, 11) = 1 So e + f = -61 or 61 (This depends on where you will assign the negative sign but it does not have an effect on the gcd of these numbers.)
Final Answer: gcd(-61, 171) = gcd(61, 171) = 1
Log in to reply
Further information regarding my solution: 1. The common difference that I am referring to is that when you get the differences of each terms in the sequence. In the first operation, the differences (for the first 5 terms) are 3, 6, 10, and 15. In the second operation, we obtain differences of 3, 4, and 5. And finally, in the third operation, we get the uniform difference of 1.
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
My answer is gcd(e + f, 171) = 1.
Solution: First, we must know that 1, 4, 10, 20, 35, ... form a kind of sequence. How do I know this? The sequence has a common difference in the third iteration or third operation of finding their common difference. (Sorry, I don't know how to type in Latex so I have to save time typing instead of typing and adjusting the texts). This sequence is ruled by the polynomial P(n) = (1/6) n^3 + (1/2) n^2 + (1/3) n.
Now to attack the question, since we have a sum of this sequence, therefore we have to sum up P(n). (Sorry again for cheating by using the formulas, I don't have much knowledge and mastery of Abel's Formula for Derivation.)
Since summation of n = (1/2)(n)(n+1) Summation of n^2 = (1/6)(n)(n+1)(2n+1) Summation of n^3 = ((1/2)(n)(n+1))^2
To simplify this up, Summation of P(n) = (1/24)(n^4 + 6 n^3 + 11 n^2 + 6 n) Equating this to an^3-bn^2+cn-d, we have to make equivalences since the summation of P(n) has degree of 4 while the given has 3.
This will yield: a = n/24 b = -n/4 c = 11n/24 d = -n/4 And checking these values will be equivalent to P(n).
Now to evaluate b/a+d/c=e/f (-n/4)(24/n) + (-n/4)(24/11n) = e/f e/f = -72/11 gcd (-72, 11) = 1 So e + f = -61 or 61 (This depends on where you will assign the negative sign but it does not have an effect on the gcd of these numbers.)
Final Answer: gcd(-61, 171) = gcd(61, 171) = 1
Log in to reply
Further information regarding my solution: 1. The common difference that I am referring to is that when you get the differences of each terms in the sequence. In the first operation, the differences (for the first 5 terms) are 3, 6, 10, and 15. In the second operation, we obtain differences of 3, 4, and 5. And finally, in the third operation, we get the uniform difference of 1.