Help with Statistics!!!

Let x¯, M and σ^2 be respectively the mean mode and variance of n observations x1, x2 ,....., xn and di = (−x1−a) ,i=1,2,.....,n, where a is any number. Statement I : Variance of d1,d1,.....,dn is σ2 Statement II : Mean and mode of d1,d2,.....,dn are −x¯−a and -M-a, respectively

Note by Ashley Shamidha
6 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Please say whether the statements are correct and relevant to each other. Also prove your answer.

Ashley Shamidha - 6 years, 2 months ago

As for the case of mode, there is nothing difficult to understand. You see, if the observations x1,x2,...,xn{ x }_{ 1 },{ x }_{ 2 },...,{ x }_{ n } have frequencies f1,f2,...,fn{ f }_{ 1 },{ f }_{ 2 },...,{ f }_{ n }, then obviously the observations (x1a),(x2a),...,(xna)(-{ x }_{ 1 }-a),(-{ x }_{ 2 }-a),...,(-{ x }_{ n }-a) must have the same set of frequencies, and thus if the r-th x value has the highest frequency, then the r-th d value will have the same, i.e., will be the mode. Now, dir=(xra)=Ma{ d }_{ ir}=(-{ x }_{ r }-a)=-M-a which shows why the mode is (-M-a). Now, for the mean calculation, we have dˉ=1=1ndifi1=1nfi=i=1n(xia)fi1=1nfi=i=1nxifii=1nafi1=1nfi=xˉi=1nfiai=1nfii=1nfi=xˉa\bar { d } =\frac { \sum _{ 1=1 }^{ n }{ { d }_{ i }{ f }_{ i } } }{ \sum _{ 1=1 }^{ n }{ { f }_{ i } } } =\frac { \sum _{ i=1 }^{ n }{ \left( -{ x }_{ i }-a \right) { f }_{ i } } }{ \sum _{ 1=1 }^{ n }{ { f }_{ i } } } =\frac { -\sum _{ i=1 }^{ n }{ { x }_{ i }{ f }_{ i } } -\sum _{ i=1 }^{ n }{ a{ f }_{ i } } }{ \sum _{ 1=1 }^{ n }{ { f }_{ i } } } =\frac { -\bar { x } \sum _{ i=1 }^{ n }{ { f }_{ i } } -a\sum _{ i=1 }^{ n }{ { f }_{ i } } }{ \sum _{ i=1 }^{ n }{ { f }_{ i } } } =-\bar { x } -a Similarly we can calculate variance as below:σd2=i=1n(didˉ)2fii=1nfi=i=1n{(xia)(xˉa)}2fii=1nfi=i=1n(xixˉ)2fii=1nfi=xd2{ \sigma }_{ d }^{ 2 }=\frac { \sum _{ i=1 }^{ n }{ { \left( { d }_{ i }-\bar { d } \right) }^{ 2 }{ f }_{ i } } }{ \sum _{ i=1 }^{ n }{ { f }_{ i } } } =\frac { \sum _{ i=1 }^{ n }{ { \left\{ \left( { -x }_{ i }-a \right) -\left( -\bar { x } -a \right) \right\} }^{ 2 }{ f }_{ i } } }{ \sum _{ i=1 }^{ n }{ { f }_{ i } } } =\frac { \sum _{ i=1 }^{ n }{ { \left( { x }_{ i }-\bar { x } \right) }^{ 2 }{ f }_{ i } } }{ \sum _{ i=1 }^{ n }{ { f }_{ i } } } ={ x }_{ d }^{ 2 }The basic idea is very simple, in case of mode or mean, we are searching for a central representative value of the whole data set. So, if any change is made to the data variable (scale change and/or origin shifting, here multiplying by -1 and then adding -a respectively), the same change is expected to be reflected in the mean or mode value. But in case of variance, which is the measure of how much the values are dispersed from the central value, no origin shifting is reflected (in simple words, the a's get cancelled during taking the differences). Hope this helped you.

Kuldeep Guha Mazumder - 5 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...