Here's a fun puzzle!

A,B,C,D,E,F,G are 7 different integers.When properly arranged,they are consecutive integers lying between 30 and 39. 1) E - D + 4 = g/4

2)The highest number B Is a prime number.

3)C- G = B - A

4) A is not an even number. Find the numbers. Have fun fellas!

Note by Sridhar Thiagarajan
8 years, 3 months ago

No vote yet
4 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

a=33,b=37,c=36,d=31,e=35,f=34,g=32

superman son - 8 years, 3 months ago

Log in to reply

Nice job!

Sridhar Thiagarajan - 8 years, 3 months ago

Log in to reply

thanks

superman son - 8 years, 3 months ago

Log in to reply

@Superman Son 4.Let X be the midpoint of the side AB of Δ ABC .Let Y be the midpoint of CX.Let BY cut AC at Z.Prove that AZ=2ZC.

superman son - 8 years, 3 months ago

Log in to reply

@Superman Son Much easier solution :

[AYX] = [BXY] = [CBY]

CZ/AZ = [CBZ]/[ABZ] = {[AZY] + [ABY]}/{[CZY] + [CBY] = 1/2

Zi Song Yeoh - 8 years, 3 months ago

Log in to reply

@Zi Song Yeoh nice job...........................

superman son - 8 years, 3 months ago

@Superman Son do this

superman son - 8 years, 3 months ago

Log in to reply

@Superman Son I Don't like proofs :P

Sridhar Thiagarajan - 8 years, 3 months ago

@Superman Son Solution :

Let BW also be a median and let their intersection, the centroid, be G. Draw XW, BW, YW so we could compare area. We denote the area of a closed figure A by [A]. Let [XGB] = 1. Then, by the centroid theorem, [WGX] = 0.5, [WAX] = 1.5, [WGY] = 0.25, [BGY] = 0.5, [BCY] = 1.5. Let [WYZ] = a, [YZC] = b. Then

ab=0.25+0.5+ab+1.5\frac{a}{b} = \frac{0.25 + 0.5 + a}{b + 1.5} Cross-multiplying yields 2a = b, so a:b=1:2a : b = 1 : 2. Since W is the midpoint of AC, AW : WZ : ZC = 3 : 1 : 2, or AZ : CZ = 2 : 1, or AZ = 2CZ.

Zi Song Yeoh - 8 years, 3 months ago

Log in to reply

@Zi Song Yeoh do this....An n-digit positive integer N is a Kaprekar number if the sum of the number formed by the last n digits in N2, and the number formed by the first n (or n−1) digits in N2 equals N. For example, 297 is a Kaprekar number since 2972 = 88209 and 88 + 209 = 297. There are five Kaprekar numbers < 100. Find them....and this There are four integers between 100 and 1000 that are each equal to the sum of the cubes of its digits. Three of them are 153, 371, and 407. Find the fourth number.

superman son - 8 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...