a2+b2+c2ab+bc+ca+13≥89(ab+c+ba+c+ca+b)\large \frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{1}{3}\geq\frac{8}{9}\bigg(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\bigg)ab+bc+caa2+b2+c2+31≥98(b+ca+a+cb+a+bc) Let a,b,c>0a,b,c>0a,b,c>0, prove the above inequality.
Note by P C 5 years ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Here's the solution. First, without losing generality, we can assume that ab+bc+ac=3ab+bc+ac=3ab+bc+ac=3, the problem'll become a2+b2+c2+1≥83(ab+c+bc+a+ca+b)a^2+b^2+c^2+1\geq\frac{8}{3}\bigg(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\bigg)a2+b2+c2+1≥38(b+ca+c+ab+a+bc) Now we'll do some manipulation on the variables in LHSLHSLHS ab+c+bc+a+ca+b=a(a+b)(a+c)+b(b+a)(b+c)+c(c+a)(c+b)(a+b)(b+c)(c+a)\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a(a+b)(a+c)+b(b+a)(b+c)+c(c+a)(c+b)}{(a+b)(b+c)(c+a)}b+ca+c+ab+a+bc=(a+b)(b+c)(c+a)a(a+b)(a+c)+b(b+a)(b+c)+c(c+a)(c+b) =a3+b3+c3+(a+b+c)(ab+bc+ca)(a+b+c)(ab+bc+ca)−abc=(a+b+c)(a2+b2+c2−ab−bc−ca+ab+bc+ca)+3abc3(a+b+c)−abc=\frac{a^3+b^3+c^3+(a+b+c)(ab+bc+ca)}{(a+b+c)(ab+bc+ca)-abc}=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ca+ab+bc+ca)+3abc}{3(a+b+c)-abc}=(a+b+c)(ab+bc+ca)−abca3+b3+c3+(a+b+c)(ab+bc+ca)=3(a+b+c)−abc(a+b+c)(a2+b2+c2−ab−bc−ca+ab+bc+ca)+3abc =(a+b+c)(a2+b2+c2)+3abc3(a+b+c)−abc=\frac{(a+b+c)(a^2+b^2+c^2)+3abc}{3(a+b+c)-abc}=3(a+b+c)−abc(a+b+c)(a2+b2+c2)+3abc So now the inequality is a2+b2+c2+1≥8[(a+b+c)(a2+b2+c2)+3abc]9(a+b+c)−3abca^2+b^2+c^2+1\geq\frac{8[(a+b+c)(a^2+b^2+c^2)+3abc]}{9(a+b+c)-3abc}a2+b2+c2+1≥9(a+b+c)−3abc8[(a+b+c)(a2+b2+c2)+3abc] ⇒[9(a+b+c)−3abc](a2+b2+c2+1)≥8(a+b+c)(a2+b2+c2)+24abc\Rightarrow [9(a+b+c)-3abc](a^2+b^2+c^2+1)\geq 8(a+b+c)(a^2+b^2+c^2)+24abc⇒[9(a+b+c)−3abc](a2+b2+c2+1)≥8(a+b+c)(a2+b2+c2)+24abc ⇔9(a+b+c)(a2+b2+c2)+9(a+b+c)−3abc(a2+b2+c2)−3abc≥8(a+b+c)(a2+b2+c2)+24abc\Leftrightarrow 9(a+b+c)(a^2+b^2+c^2)+9(a+b+c)-3abc(a^2+b^2+c^2)-3abc\geq 8(a+b+c)(a^2+b^2+c^2)+24abc⇔9(a+b+c)(a2+b2+c2)+9(a+b+c)−3abc(a2+b2+c2)−3abc≥8(a+b+c)(a2+b2+c2)+24abc ⇔(a+b+c)(a2+b2+c2+9)≥3abc(a2+b2+c2+9)\Leftrightarrow (a+b+c)(a^2+b^2+c^2+9)\geq 3abc(a^2+b^2+c^2+9)⇔(a+b+c)(a2+b2+c2+9)≥3abc(a2+b2+c2+9) ⇒a+b+c≥3abc\Rightarrow a+b+c\geq 3abc⇒a+b+c≥3abc The last inequality can be proven easily by these following inequalities: (a+b+c)2≥3(ab+bc+ca)(a+b+c)^2\geq 3(ab+bc+ca)(a+b+c)2≥3(ab+bc+ca) and abc≤(ab+bc+ca3)3abc\leq\sqrt{\big(\frac{ab+bc+ca}{3}\big)^3}abc≤(3ab+bc+ca)3. The equality holds when a=b=ca=b=ca=b=c
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Here's the solution. First, without losing generality, we can assume that ab+bc+ac=3, the problem'll become a2+b2+c2+1≥38(b+ca+c+ab+a+bc) Now we'll do some manipulation on the variables in LHS b+ca+c+ab+a+bc=(a+b)(b+c)(c+a)a(a+b)(a+c)+b(b+a)(b+c)+c(c+a)(c+b) =(a+b+c)(ab+bc+ca)−abca3+b3+c3+(a+b+c)(ab+bc+ca)=3(a+b+c)−abc(a+b+c)(a2+b2+c2−ab−bc−ca+ab+bc+ca)+3abc =3(a+b+c)−abc(a+b+c)(a2+b2+c2)+3abc So now the inequality is a2+b2+c2+1≥9(a+b+c)−3abc8[(a+b+c)(a2+b2+c2)+3abc] ⇒[9(a+b+c)−3abc](a2+b2+c2+1)≥8(a+b+c)(a2+b2+c2)+24abc ⇔9(a+b+c)(a2+b2+c2)+9(a+b+c)−3abc(a2+b2+c2)−3abc≥8(a+b+c)(a2+b2+c2)+24abc ⇔(a+b+c)(a2+b2+c2+9)≥3abc(a2+b2+c2+9) ⇒a+b+c≥3abc The last inequality can be proven easily by these following inequalities: (a+b+c)2≥3(ab+bc+ca) and abc≤(3ab+bc+ca)3. The equality holds when a=b=c