To all those experienced students with decimals and fractions, we know that 0.33333... is 1/3 because only the 3 is repeating, so you simply put one 9 in the denominator to get 3/9 or 1/3. Or perhaps... 0.63 repeating can be expressed as 63/99 since two digits are being repeated to get 7/11. (if you didn't know this before hand, it's fine. Now you know :D). A harder question may ask 0.1256, where only 56 part is being repeated. This may be changed to 0.12+56/9900. Yes, there is a pattern, but I want to challenge you to derive this algebraically(use examples if it helps) BONUS: Turn 0.166666.. and 0.2118118118118.... into fractional form
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
These observations are a result of the following fact:
0.d1d2⋯dn=10n−1d1d2⋯dn where d1,d2,⋯,dn denote digits.
The proof is quite simple.
Thx i learned so much