Let \(ABC\) be a triangle with \(AB = AC\) and \(\angle BAC = 30^{\circ}\), Let \(A'\) be the reflection of \(A\) in the line \(BC\); \(B'\) be the reflection of \(B\) in the line \(CA\); \(C'\) be the reflection of \(C\) in line \(AB\), Show that \(A'B'C'\) is an equilateral triangle.
Any help will be appreciated.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Draw the figure and notice that connecting points BCB'C' results in a rectangle because the diagonals (CC' and BB' bisect each other). AA' contains a segment that bisects B'C' and also bisects rectangle BCB'C' vertically in to 2 smaller congruent rectangles, whose diagonals are congruent, A'C' = A'B'. Since A'B is half of A'C', all three sides of triangle A'B'C' are equal and it is equilateral.
Log in to reply
Please look at my solution. Thank you.