How to start?

n=11n2cos(9nπ+(nπ)29)=π212e3 \displaystyle \sum_{n=1}^{\infty} \dfrac{1}{n^2} \cos\Big(\dfrac{9}{n\pi + \sqrt{(n\pi)^2 - 9}}\Big) = - \dfrac{\pi^2}{12e^3}

Note by U Z
6 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Can you approximate nπ(nπ)29 n \pi - \sqrt{ ( n \pi ) ^2 - 9 } as nn gets large? Use Big-O notation if you are familiar with that.

Are you sure that there is an e3 e^3 in there?

Also, please use distinct values for your indices. You cannot take the sum of the variable nn , as it goes from 1 to nn.

Calvin Lin Staff - 6 years, 5 months ago

Log in to reply

I am not familiar with that , I am sure that this is the question . Unable to solve that's why shared it and mentioned some brilliant members.

In a magazine - Mathematics today I saw it , Chapter - definite integration , section - Sandwich theorem

U Z - 6 years, 5 months ago

Shivang Jindal Ronak Agarwal Pratik Shastri Sudeep Salgia @Rube

U Z - 6 years, 5 months ago

What is p?

Abhay Agnihotri - 6 years, 5 months ago

Log in to reply

sorry its π\pi

U Z - 6 years, 5 months ago
×

Problem Loading...

Note Loading...

Set Loading...