Here on facebook timeline Sir Srinivasa Raghava
share a integral problem
1.
Prove
∫0∞(tanh(1x)+tanh(2x)+tanh(3x)+tanh(4x))xe−xdx=log(225π4Γ(127)2Γ(1211)233554432Γ(1213)2Γ(1217)Γ(47)8)31=log(6)=log(2)+log(3)
So this inspires me to generalize integral in closed form
∫0∞(tanh(1x)+tanh(2x)+tanh(3x)+⋯+tanh(nx))xe−xdx =21∫01(H2x+4n−2−H2x+4n−4)dx=1≤k≤n∑log(Γ(4k+2)2Γ(4k)Γ(4k+4))
2.Worthy analytical results.n→0+limn∫0∞tanh(xn)xe−xdx=1n→∞+lim(1+∫0∞tanh(nx)xe−xdx)n=em→∞+limn→∞+limk=1∏m(1+∫0∞tanh(nx)xe−xdx)knm1=eγ Here γ and e is Euler-Mascheroni constant and Euler's number.
#Calculus
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.