This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.
print "hello world"
Math
Appears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3
2×3
2^{34}
234
a_{i-1}
ai−1
\frac{2}{3}
32
\sqrt{2}
2
\sum_{i=1}^3
∑i=13
\sin \theta
sinθ
\boxed{123}
123
Comments
ya it's cool.you try to find the square of the quantity,with one variable x and the other y.then you integrate them simultaneously,a double integral.It's easy to evaluate once you transform it to polar coordinates.Nice One.Answer is root pi
As our function is an even function therefore split the limit of integration from -infinity to +infinity as 2 times 0 to infinity and use Gamma function by making a suitable substitution. It can also be done by converting the problem into polar form.
Although ∫e−x2dx can't be expressed in terms of elementary functions, we can evaluate ∫−∞+∞e−x2dx. Doing so yields π (for justification see http://en.wikipedia.org/wiki/Gaussian_integral#Computation).
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
ya it's cool.you try to find the square of the quantity,with one variable x and the other y.then you integrate them simultaneously,a double integral.It's easy to evaluate once you transform it to polar coordinates.Nice One.Answer is root pi
lower limit is negative infinity..
Log in to reply
is it 0
You can also look up this pdf www.stankova.net/statistics2012/doubleintegration.pdf.
another not-so-cool way is to use gamma function.use the substitution x=root u
squareroot of Pi ? ( Error Function)
As our function is an even function therefore split the limit of integration from -infinity to +infinity as 2 times 0 to infinity and use Gamma function by making a suitable substitution. It can also be done by converting the problem into polar form.
This function is not integrable using the methods we learn till Undergraduate college level. I don't know about what we learn in college...
Although ∫e−x2dx can't be expressed in terms of elementary functions, we can evaluate ∫−∞+∞e−x2dx. Doing so yields π (for justification see http://en.wikipedia.org/wiki/Gaussian_integral#Computation).
It can be solved by GAMMA FUNCTION=integrate(0-infinity)e^-x.x^(n-1)dx for all x>=1 x belongs to Z+!!!
I think ans is 0 .. I think we can solve it using integration by part