I have got a very messy solution of pell's equation. What to do?

I was having free time, and was having no books around, so I tried to find a solution to Pell's equation by myself to pass time. But then I really got a strange result regarding the integer solutions of the equation. x^2 – 1 = ny^2 -------- (1) So, (x/y)^2 – (1/y)^2 = n Taking (1/y)^2 as k, this turns out the equation as (x^2)/k = n + k So, x^2 = k^2 + nk Thus, K^2 + nk – x^2 = 0 By the quadratic formula, the first value of k turns out to be imaginary, but inspecting the second value of k, and converting it in the form of y^2, it turns out to be, y^2 = 2/(n + √(n^2 + 4x)) and eventually, ny^2 + (y^2)( √(n^2 + 4x)) = 3 substituting value of ny^2 from (1), we get x^2 – 1 + (y^2)( √(n^2 + 4x))=2 This implies, x^2 + y^2(√(n^2+4x))=3 Now taking √(n^2 + 4x) as z , and also noticing that minimum value of both n and x is 1, the only value of z which fits the equation is 5, and for that x must be equal to 1, so the equation turns out to be, 1 + y√5 = 3 But in this case y cannot be an integer, so it eventually proves that pell’s equation has no integer solutions.

What is wrong with my proof ?

#Algebra #HelpMe! #Proofs #MathProblem #Math #Brilliant

Note by Siddharth Kumar
8 years, 5 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Okay thnx I got it. I HAVE FINALLY GOT A SOLUTION BY MYSELF!

Siddharth Kumar - 8 years, 5 months ago

Log in to reply

In that case, can you edit your discussion and write it up properly so that the rest of us can read and understand what you're saying?

Please double check that you didn't make any careless calculation mistakes. There were several in your post, even allowing for errors carried forward.

Calvin Lin Staff - 8 years, 5 months ago

plzz help me

Siddharth Kumar - 8 years, 5 months ago

Log in to reply

Please check your equations and correct all the careless mistakes.

Calvin Lin Staff - 8 years, 5 months ago

@Siddharth K. Can you type your proof in LaTex, I'm confused

Zi Song Yeoh - 8 years, 5 months ago

You can start by fixing this step, and then work out the rest and be careful with your algebra:

"(x/y)^2 – (1/y)^2 = n Taking (1/y)^2 as k, this turns out the equation as (x^2)/k = n + k"

Specifically, note that if 1/y^2 = k, then (x/y)^2 = x^2 * k not x^2/k.

Eli Ross - 8 years, 5 months ago

You made the mistake on the 4th line by writing x2y2\frac{x^2}{y^2} = x2k\frac{x^2}{k}, rather than the correct substitution, x2y2\frac{x^2}{y^2} = x2x^{2}k. If you interested in learning how the equation is derived and why it works then visit the wiki page I created: https://brilliant.org/wiki/quadratic-diophantine-equations-pells-equation/ Also hover your mouse over my equations to see how I formatted them - that should help :)

Curtis Clement - 6 years, 5 months ago
×

Problem Loading...

Note Loading...

Set Loading...