Given a circle (let's call it circle \(O\) ) inscribed in a triangle \(XYZ\) with \( XY \neq XZ\). The circle \(O\) touches \(YZ\), \(ZX\), and \(XY\) at \(U\), \(V\), and \(W\) respectively. Point \(R\) lies on \(XZ\) and point \(S\) lies on \(XY\), such that \(RS\) and \(YZ\) are parallel to each other. Let \(P\) be a circle that passes through the point \(R\) and \(S\), and \(P\) touches the circle \(O\) at \(T\). Prove that \(VW\), \(UT\), and \(RS\) intersect at one point.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.