I took many hours to solve this problem given by my professor. I solve it manually like listing all possible answers but same as my earlier trials i didn't get the answer. Could someone help me with this. So much appreciated.

Okay so this is the problem...

The digits of a three-digit number are in geometric progression. If 596 is subtracted from this number ,the resulting three-digit number has its digits in arithmetic progression with a common difference equal to the reciprocal of the ratio of the geometric progression. Find the number.

#MathProblem #Math

Note by Crischell Baylon
6 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

It is clear that the only possible cases are 111,124,421,248,842,139111, 124, 421, 248, 842, 139 and 931931. Further as the number is greater than 596596 we are left with only two cases: 842842 and 931931. Now just subtracting 596596 from each of these numbers it is clear that 842842 satisfies the given condition.

Karthik Kannan - 6 years, 11 months ago

Log in to reply

You can also use the fact that the arithmetic progression is the reciprocal of the geometric progression ratio; that must mean that the geometric progression is decreasing, eliminating all but 33 possibilities.

Daniel Liu - 6 years, 11 months ago

Thank you very much for your response. I also found the number 842 but i felt uncertain of answering this number because of the rule of geometric progression. Therefore i tried other numbers..

Crischell Baylon - 6 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...