Prove that the area of triangle with angles \(\alpha,\beta,\gamma\) knowing that the distances from an arbitrary point \(M\) taken inside the triangle to its sides are equal to \(m,n,k\) is equal to \(\frac{(k \sin \gamma + n \sin \alpha + m \sin \beta)^{2}}{2 \sin \alpha \sin \beta \sin \gamma}\).
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
The question is confusing. I believe you missed a number "Prove the area of a triangle with angles x,y,z knowing that"
Log in to reply
No !! its correct. Please tell me what are you confused at.
Log in to reply
what is the area I'm supposed to prove?
Log in to reply
△ABC=2sinαsinβsinγ(ksinγ+nsinα+msinβ)2
You have to prove that area ofLog in to reply