\(a,b,c\) are positive real numbers and \(abc=1\). Prove that
12+a+12+b+12+c≥11+a+b+11+b+c+11+c+a\frac{1}{2+a} + \frac{1}{2+b} + \frac{1}{2+c} \geq \frac{1}{1+a+b} + \frac{1}{1+b+c} + \frac{1}{1+c+a}2+a1+2+b1+2+c1≥1+a+b1+1+b+c1+1+c+a1
Note by Fahim Shahriar Shakkhor 6 years, 11 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
12+a+12+b+12+c≥11+a+b+11+b+c+11+c+a⇒(2+a)(2+b)+(2+b)(2+c)+(2+a)(2+c)(2+a)(2+b)(2+c)≥(1+a+b)(1+b+c)+(1+a+b)(1+a+c)+(1+a+c)(1+b+c)(1+a+b)(1+a+c)(1+b+c)⇒(4+2a+2b+ab)+(4+2b+2c+bc)+(4+2a+2c+ac)8+4a+4b+4c+2ab+2ac+2bc+abc≥(1+a+2b+c+ab+bc+ac+b2)+(1+2a+b+c+ab+bc+ac+a2)+(1+a+b+2c+ab+bc+ac+c2)2(a+b+c)+3(ab+bc+ca)+(a2+b2+c2)+(a+b+c)(ab+bc+ca)⇒12+4(a+b+c)+(ab+bc+ca)9+4(a+b+c)+2(ab+bc+ca)≥3+4(a+b+c)+3(ab+bc+ca)+(a2+b2+c2)2(a+b+c)+3(ab+bc+ca)+(a2+b2+c2)+(a+b+c)(ab+bc+ca)\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c} \geq \dfrac{1}{1+a+b}+\dfrac{1}{1+b+c}+\dfrac{1}{1+c+a} \\ \Rightarrow \dfrac{(2+a)(2+b)+(2+b)(2+c)+(2+a)(2+c)}{(2+a)(2+b)(2+c)} \geq \dfrac{(1+a+b)(1+b+c)+(1+a+b)(1+a+c)+(1+a+c)(1+b+c)}{(1+a+b)(1+a+c)(1+b+c)} \\ \Rightarrow \dfrac{ (4+2a+2b+ab)+(4+2b+2c+bc)+(4+2a+2c+ac)}{8+4a+4b+4c+2ab+2ac+2bc+abc} \geq \dfrac{(1+a+2b+c+ab+bc+ac+b^2)+(1+2a+b+c+ab+bc+ac+a^2)+(1+a+b+2c+ab+bc+ac+c^2)}{2(a+b+c)+3(ab+bc+ca)+(a^2+b^2+c^2)+(a+b+c)(ab+bc+ca)} \\ \Rightarrow \dfrac{12+4(a+b+c)+(ab+bc+ca)}{9+4(a+b+c)+2(ab+bc+ca)} \geq \dfrac{3+4(a+b+c)+3(ab+bc+ca)+(a^2+b^2+c^2)}{2(a+b+c)+3(ab+bc+ca)+(a^2+b^2+c^2)+(a+b+c)(ab+bc+ca)} 2+a1+2+b1+2+c1≥1+a+b1+1+b+c1+1+c+a1⇒(2+a)(2+b)(2+c)(2+a)(2+b)+(2+b)(2+c)+(2+a)(2+c)≥(1+a+b)(1+a+c)(1+b+c)(1+a+b)(1+b+c)+(1+a+b)(1+a+c)+(1+a+c)(1+b+c)⇒8+4a+4b+4c+2ab+2ac+2bc+abc(4+2a+2b+ab)+(4+2b+2c+bc)+(4+2a+2c+ac)≥2(a+b+c)+3(ab+bc+ca)+(a2+b2+c2)+(a+b+c)(ab+bc+ca)(1+a+2b+c+ab+bc+ac+b2)+(1+2a+b+c+ab+bc+ac+a2)+(1+a+b+2c+ab+bc+ac+c2)⇒9+4(a+b+c)+2(ab+bc+ca)12+4(a+b+c)+(ab+bc+ca)≥2(a+b+c)+3(ab+bc+ca)+(a2+b2+c2)+(a+b+c)(ab+bc+ca)3+4(a+b+c)+3(ab+bc+ca)+(a2+b2+c2)
Let x=a+b+cx=a+b+cx=a+b+c and y=ab+bc+caa2+b2+c2=(a+b+c)2−2(ab+bc+ca)=x2−2yy=ab+bc+ca \\ a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)=x^2-2yy=ab+bc+caa2+b2+c2=(a+b+c)2−2(ab+bc+ca)=x2−2y
Putting the values we get,
12+4x+y9+4x+2y≥3+4x+x2+y2x+y+x2+xy⇒3x2y+xy2+6xy−5x2−y2−24x−3y−27≥0⇒(53x2y−5x2)+(43x2y−12x)+(xy23−y2)+(xy23−3x)+(xy23−3y)+(3xy−9x)+(3xy−27)≥0\displaystyle \dfrac{12+4x+y}{9+4x+2y} \geq \dfrac{3+4x+x^2+y}{2x+y+x^2+xy} \\\Rightarrow 3x^2y+xy^2+6xy-5x^2-y^2-24x-3y-27 \geq 0 \\\Rightarrow (\dfrac{5}{3}x^2y-5x^2)+(\dfrac{4}{3}x^2y-12x)+(\dfrac{xy^2}{3}-y^2)+(\dfrac{xy^2}{3}-3x) + (\dfrac{xy^2}{3}-3y) + (3xy-9x) + (3xy-27) \geq 0 9+4x+2y12+4x+y≥2x+y+x2+xy3+4x+x2+y⇒3x2y+xy2+6xy−5x2−y2−24x−3y−27≥0⇒(35x2y−5x2)+(34x2y−12x)+(3xy2−y2)+(3xy2−3x)+(3xy2−3y)+(3xy−9x)+(3xy−27)≥0
which is true because x,y≥3x,y\geq3x,y≥3
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
2+a1+2+b1+2+c1≥1+a+b1+1+b+c1+1+c+a1⇒(2+a)(2+b)(2+c)(2+a)(2+b)+(2+b)(2+c)+(2+a)(2+c)≥(1+a+b)(1+a+c)(1+b+c)(1+a+b)(1+b+c)+(1+a+b)(1+a+c)+(1+a+c)(1+b+c)⇒8+4a+4b+4c+2ab+2ac+2bc+abc(4+2a+2b+ab)+(4+2b+2c+bc)+(4+2a+2c+ac)≥2(a+b+c)+3(ab+bc+ca)+(a2+b2+c2)+(a+b+c)(ab+bc+ca)(1+a+2b+c+ab+bc+ac+b2)+(1+2a+b+c+ab+bc+ac+a2)+(1+a+b+2c+ab+bc+ac+c2)⇒9+4(a+b+c)+2(ab+bc+ca)12+4(a+b+c)+(ab+bc+ca)≥2(a+b+c)+3(ab+bc+ca)+(a2+b2+c2)+(a+b+c)(ab+bc+ca)3+4(a+b+c)+3(ab+bc+ca)+(a2+b2+c2)
Let x=a+b+c and y=ab+bc+caa2+b2+c2=(a+b+c)2−2(ab+bc+ca)=x2−2y
Putting the values we get,
9+4x+2y12+4x+y≥2x+y+x2+xy3+4x+x2+y⇒3x2y+xy2+6xy−5x2−y2−24x−3y−27≥0⇒(35x2y−5x2)+(34x2y−12x)+(3xy2−y2)+(3xy2−3x)+(3xy2−3y)+(3xy−9x)+(3xy−27)≥0
which is true because x,y≥3