Find a formula for \(\sum_{i=0}^\infty i^{2014}x^{i}\). In other words, find \(0^{2014}x^{0}+1^{2014}x^{1}+2^{2014}x^{2}+3^{2014}x^{3}+4^{2014}x^{4}+...\).
Hint: Try a form of recursion(not with numbers, but with a formula).
This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
Just a note, I know how to do it, but it would take a very long time(probably over a month straight) of working out some functions. I'm not really looking for an exact solution(don't actually take the time to do it), but if anyone can discover the method I'm using, that would be wonderful.
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
We can get a recurrence relation in the following manner:
For positive integers k we define Tk(x)=∑i=0∞ikxi ∀x∈(0,1)
We know T1(x)=(1−x)2x
Also Tk+1(x)=xdxdTk(x)
Log in to reply
To be precise, is there a way of expanding your recursion formula?
Log in to reply
Sorry, I didnt get you. What do you exactly mean by expanding the recursion formula? Did you mean this-
Tk+1(x)=Tk(x)+x2Tk−1′′(x)
Log in to reply
For a start, I labeled Tk=(1−x)k+1f(x). Then, try working around with that.
Just a note, I know how to do it, but it would take a very long time(probably over a month straight) of working out some functions. I'm not really looking for an exact solution(don't actually take the time to do it), but if anyone can discover the method I'm using, that would be wonderful.