\(\int { \sqrt { \tan { x } } } \, dx \)

tanx dx=u=lettanx2u2u4+1du=2u2+1u2du=1+1u2(u1u)2+2du+11u2(u+1u)22du=v=letu1uw=letu+1u1v2+2dv+1w22dw=12tan1v2+c112tanh1w2+c2=22tan1(u1u)2222tanh1(u+1u)22+c=22(tan1(tanxcotx)22tanh1(tanx+cotx)22)+c\begin{aligned} \int { \sqrt { \tan { x } } } \ dx & \overset { u\overset { let }{ = } \sqrt { \tan { x } } }{ = } \int { \frac { 2u^2 }{ { u }^{ 4 }+1 } du } \\ \quad & = \int { \frac { 2 }{ { u }^{ 2 }+\frac { 1 }{ { u }^{ 2 } } }du } \\ \quad & = \int { \frac { 1+\frac { 1 }{ { u }^{ 2 } } }{ { (u-\frac { 1 }{ u } ) }^{ 2 }+2 } du } +\int { \frac { 1-\frac { 1 }{ { u }^{ 2 } } }{ { (u+\frac { 1 }{ u } ) }^{ 2 }-2 } du } \\ \quad & \overset { \begin{matrix} v\overset { let }{ = } u-\frac { 1 }{ u } \\ w\overset { let }{ = } u+\frac { 1 }{ u } \end{matrix} }{ = } \int { \frac { 1 }{ { v }^{ 2 }+2 } dv } +\int { \frac { 1 }{ { w }^{ 2 }-2 } dw } \\ \quad & = \frac { 1 }{ \sqrt { 2 } } \tan ^{ -1 }{ \frac { v }{ \sqrt { 2 } } +{ c }_{ 1 } } -\frac { 1 }{ \sqrt { 2 } } \tanh ^{ -1 }{ \frac { w }{ \sqrt { 2 } } } +{ c }_{ 2 } \\ \quad & = \frac { \sqrt { 2 } }{ 2 } \tan ^{ -1 }{ \frac { (u-\frac { 1 }{ u } )\sqrt { 2 } }{ 2 } } -\frac { \sqrt { 2 } }{ 2 } \tanh ^{ -1 }{ \frac { (u+\frac { 1 }{ u } )\sqrt { 2 } }{ 2 } } +{ c } \\ \quad & = \boxed { \frac { \sqrt { 2 } }{ 2 } (\tan ^{ -1 }{ \frac { (\sqrt { \tan { x } } -\sqrt { \cot { x } } )\sqrt { 2 } }{ 2 } } -\tanh ^{ -1 }{ \frac { (\sqrt { \tan { x } } +\sqrt { \cot { x } } )\sqrt { 2 } }{ 2 } } )+c } \end{aligned}

#Calculus

Note by Gandoff Tan
2 years ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

I finally found the answer to the hardest integral

Jay Mark Acedo - 1 year, 7 months ago

Wait, is tanh really involved?

Ruilin Wang - 1 year, 10 months ago

Log in to reply

Yes.

Gandoff Tan - 1 year, 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...