Just keeping a note to self that I can revise and study for my upcoming integration bee. I'd love your advice for studying for it here!
∫xnex dx=n!ex(n!xn−(n−1)!xn−1+(n−2)!xn−2−(n−3)!xn−3+⋯+)+C
∫(x+a)(x+b)1 dx=a−b1ln∣∣∣∣x+ax+b∣∣∣∣+C,a>b
Ia=∫xa+x1 dx=−a−11ln(1+xa−11)+C
In=∫02πsinn(x) dx=∫02πcosn(x) dx,n≥3
- I2k=21×43×65×⋯×2k2k−1×2π ⟸ 21×⋯×the power itselfone less×2π
- I2k+1=32×54×76×⋯×2k+12k ⟸ 32×⋯×the power itselfone less
Ia=∫01lnxxa−1 dx=ln(a+1)+C
∫ex(f(x)+f′(x)) dx=exf(x)+C
∫01xm(1−x)n dx=(m+n+1)!m!n!+C
#Calculus
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.