Integrals may not help this time...

Can you add up all positive rational numbers less than 1? (Read carefully... I said rationalrational and not realreal numbers).

#Calculus

Note by Maharnab Mitra
7 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Sure they can all be added up. It's an infinite sum. See harmonic sums, like 1/2 + 1/3 + 1/4 + ... etc. Of course, Gaussian rationals can't be included in this sum because "less than 1" has no meaning for complex numbers.

Michael Mendrin - 7 years, 4 months ago

Log in to reply

But how?

Maharnab Mitra - 7 years, 3 months ago

I think a more interesting question is, given the set of all positive rationals from 0 to 1, say that the number of the elements in this set is n. Then what is 1/n of the sum of all of them? I don't have an answer to that one yet, I'll think about it when I get the time. I know that (1/n) of the sum 1 + 1/2 + 1/3 + ... + 1/n has the limiting value of 0 as n -> ∞.

Michael Mendrin - 7 years, 4 months ago

Log in to reply

Wouldn't this be 1/2 ? We could pair each rational number x (other than 1/2) with (1 - x); then the sum would be lim(n->infinity)[(1/n)(((n-1)/2) + (1/2))] = lim(n->infinity)((1/n)(n/2)) = 1/2.

Brian Charlesworth - 7 years, 4 months ago
×

Problem Loading...

Note Loading...

Set Loading...