Integration Challenge 3! [Courtesy: Hasan Kassim]

0xa1+xnln(1+xnxm) dx = πncsc(π(a+1)n)(mπncot(π(a+1)n)(ψ(na1n)+γ))\large \displaystyle \int_{0}^{\infty}{\frac{{x}^{a}}{1+{x}^{n}} \ln\left(\frac{1+{x}^{n}}{{x}^{m}}\right) \ dx} \ = \ \large \frac{\pi}{n} \csc\left(\frac{\pi(a+1)}{n}\right) \left(\frac{m\pi}{n}\cot\left(\frac{\pi(a+1)}{n}\right) - \left(\psi\left(\frac{n-a-1}{n}\right) + \gamma\right)\right)

Prove the identity above.

Note by Kartik Sharma
5 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Consider I(z)=0xa(xn+1)zdx\displaystyle\text{I}(z) = \int_{0}^{\infty}\dfrac{x^a}{(x^n+1)^z} \mathrm{d}x

Putting xn+1=1tx^n+1=\dfrac{1}{t}, we have,

I(z)=1n01tz(a+1n1)(1t)(a+1n1)dt\displaystyle\text{I}(z) = \dfrac{1}{n} \int_{0}^{1} t^{z-\left(\frac{a+1}{n}-1\right)}(1-t)^{\left(\frac{a+1}{n}-1\right)} \mathrm{d}t

=1nB(a+1n,za+1n)\displaystyle = \dfrac{1}{n} \operatorname{B}\left(\dfrac{a+1}{n}, z-\dfrac{a+1}{n}\right)

=1nΓ(a+1n)Γ(za+1n)Γ(z)\displaystyle=\dfrac{1}{n} \dfrac{\Gamma \left(\dfrac{a+1}{n}\right)\Gamma\left(z-\dfrac{a+1}{n}\right)}{\Gamma(z)}

    I(z)=1nΓ(a+1n)Γ(za+1n)Γ(z)Γ(z)Γ(a+1n)Γ(za+1n)(Γ(z))2\displaystyle\implies \text{I} '(z)=\dfrac{1}{n} \dfrac{\Gamma \left(\dfrac{a+1}{n}\right)\Gamma ' \left(z-\dfrac{a+1}{n}\right)\Gamma(z)-\Gamma '(z)\Gamma\left(\dfrac{a+1}{n}\right)\Gamma\left(z-\dfrac{a+1}{n}\right)}{(\Gamma (z))^2}

    I(1)=1nΓ(a+1n)Γ(1a+1n)Γ(1)Γ(1)Γ(a+1n)Γ(1a+1n)(Γ(1))2\displaystyle\implies \text{I} '(1)=\dfrac{1}{n} \dfrac{\Gamma \left(\dfrac{a+1}{n}\right)\Gamma ' \left(1-\dfrac{a+1}{n}\right)\Gamma(1)-\Gamma '(1)\Gamma\left(\dfrac{a+1}{n}\right)\Gamma\left(1-\dfrac{a+1}{n}\right)}{(\Gamma (1))^2}

Now, since Γ(z)=ψ(z)Γ(z)\displaystyle\Gamma '(z)=\psi(z)\cdot\Gamma(z) and Γ(1)=γ\Gamma '(1)=-\gamma and using Euler's reflection formula, we have,

I(1)=πncsc(π(a+1)n(ψ(1a+1n)+γ))\displaystyle\text{I}'(1)=\dfrac{\pi}{n}\csc\left(\dfrac{\pi(a+1)}{n}\left(\psi\left(1-\dfrac{a+1}{n}\right)+\gamma\right)\right)

Also, from the original integral,

I(1)=0xaxn+1ln(xn+1) dx\displaystyle\text{I}'(1)=-\int_{0}^{\infty}\dfrac{x^a}{x^n+1}\ln (x^n+1) \ \mathrm{d}x

0xaxn+1ln(xn+1) dx=πncsc(π(a+1)n(ψ(1a+1n)+γ)) (1)\displaystyle\therefore \int_{0}^{\infty}\dfrac{x^a}{x^n+1}\ln (x^n+1) \ \mathrm{d}x = -\dfrac{\pi}{n}\csc\left(\dfrac{\pi(a+1)}{n}\left(\psi\left(1-\dfrac{a+1}{n}\right)+\gamma\right)\right) \ (1)

Next, let J(a)=0xa(xn+1)dx\displaystyle\text{J}(a)= \int_{0}^{\infty}\dfrac{x^a}{(x^n+1)}\mathrm{d}x

Note that J(a)=I(1)\text{J}(a)=\text{I}(1)

=1nΓ(a+1n)Γ(1a+1n)Γ(1)\displaystyle=\dfrac{1}{n} \dfrac{\Gamma \left(\dfrac{a+1}{n}\right)\Gamma\left(1-\dfrac{a+1}{n}\right)}{\Gamma(1)}

=πncsc(π(a+1)n)\displaystyle=\dfrac{\pi}{n}\csc\left(\dfrac{\pi(a+1)}{n}\right)

Therefore,

J(1)=0xa1+xnlnx dx=π2n2csc(π(a+1)n)cot(π(a+1)n) (2)\displaystyle\text{J}'(1)=\int_{0}^{\infty}\dfrac{x^a}{1+x^n}\ln x \ \mathrm{d}x = -\dfrac{{\pi}^{2}}{n^2}\csc\left(\dfrac{\pi(a+1)}{n}\right)\cot\left(\dfrac{\pi(a+1)}{n}\right) \ (2)

Operating (1)m×(2)(1)-m\times(2), we have,

0xaxn+1ln(xn+1xm)dx=πncsc(π(a+1)n)[mπncot(π(a+1)n)(ψ(1a+1n)+γ)]\displaystyle\int_{0}^{\infty}\dfrac{x^a}{x^n+1}\ln \left(\dfrac{x^n+1}{x^m}\right)\mathrm{d}x=\dfrac{\pi}{n}\csc\left(\dfrac{\pi(a+1)}{n}\right)\left[\dfrac{m\pi}{n}\cot\left(\dfrac{\pi(a+1)}{n}\right)-\left(\psi\left(1-\dfrac{a+1}{n}\right)+\gamma\right)\right]

Q.E.D.

Ishan Singh - 5 years, 9 months ago

Log in to reply

@Kartik Sharma Can you please re-check whether R.H.S. contains +γ+\gamma or γ-\gamma in the bracket?

Ishan Singh - 5 years, 9 months ago

Log in to reply

Edited! Great! Congratulations once again! (You can post the proof of the first challenge even though I've done already, a new proof will be accepted; just in case I thought you must be interested).

Kartik Sharma - 5 years, 9 months ago

@Hasan Kassim

Kartik Sharma - 5 years, 9 months ago

I'm not so good at high level integrals. But I'm writing all the proofs provided by u and trying to use them. Thanks a lot man. Keep on posting proofs!

Aditya Kumar - 5 years, 9 months ago

so LoveLy As always

Aman Rajput - 5 years, 9 months ago
×

Problem Loading...

Note Loading...

Set Loading...