∫0∞xa1+xnln(1+xnxm) dx = πncsc(π(a+1)n)(mπncot(π(a+1)n)−(ψ(n−a−1n)+γ))\large \displaystyle \int_{0}^{\infty}{\frac{{x}^{a}}{1+{x}^{n}} \ln\left(\frac{1+{x}^{n}}{{x}^{m}}\right) \ dx} \ = \ \large \frac{\pi}{n} \csc\left(\frac{\pi(a+1)}{n}\right) \left(\frac{m\pi}{n}\cot\left(\frac{\pi(a+1)}{n}\right) - \left(\psi\left(\frac{n-a-1}{n}\right) + \gamma\right)\right)∫0∞1+xnxaln(xm1+xn) dx = nπcsc(nπ(a+1))(nmπcot(nπ(a+1))−(ψ(nn−a−1)+γ))
Prove the identity above.
Note by Kartik Sharma 5 years, 9 months ago
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
_italics_
**bold**
__bold__
- bulleted- list
1. numbered2. list
paragraph 1paragraph 2
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
This is a quote
# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"
\(
\)
\[
\]
2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Consider I(z)=∫0∞xa(xn+1)zdx\displaystyle\text{I}(z) = \int_{0}^{\infty}\dfrac{x^a}{(x^n+1)^z} \mathrm{d}xI(z)=∫0∞(xn+1)zxadx
Putting xn+1=1tx^n+1=\dfrac{1}{t}xn+1=t1, we have,
I(z)=1n∫01tz−(a+1n−1)(1−t)(a+1n−1)dt\displaystyle\text{I}(z) = \dfrac{1}{n} \int_{0}^{1} t^{z-\left(\frac{a+1}{n}-1\right)}(1-t)^{\left(\frac{a+1}{n}-1\right)} \mathrm{d}tI(z)=n1∫01tz−(na+1−1)(1−t)(na+1−1)dt
=1nB(a+1n,z−a+1n)\displaystyle = \dfrac{1}{n} \operatorname{B}\left(\dfrac{a+1}{n}, z-\dfrac{a+1}{n}\right)=n1B(na+1,z−na+1)
=1nΓ(a+1n)Γ(z−a+1n)Γ(z)\displaystyle=\dfrac{1}{n} \dfrac{\Gamma \left(\dfrac{a+1}{n}\right)\Gamma\left(z-\dfrac{a+1}{n}\right)}{\Gamma(z)}=n1Γ(z)Γ(na+1)Γ(z−na+1)
⟹ I′(z)=1nΓ(a+1n)Γ′(z−a+1n)Γ(z)−Γ′(z)Γ(a+1n)Γ(z−a+1n)(Γ(z))2\displaystyle\implies \text{I} '(z)=\dfrac{1}{n} \dfrac{\Gamma \left(\dfrac{a+1}{n}\right)\Gamma ' \left(z-\dfrac{a+1}{n}\right)\Gamma(z)-\Gamma '(z)\Gamma\left(\dfrac{a+1}{n}\right)\Gamma\left(z-\dfrac{a+1}{n}\right)}{(\Gamma (z))^2}⟹I′(z)=n1(Γ(z))2Γ(na+1)Γ′(z−na+1)Γ(z)−Γ′(z)Γ(na+1)Γ(z−na+1)
⟹ I′(1)=1nΓ(a+1n)Γ′(1−a+1n)Γ(1)−Γ′(1)Γ(a+1n)Γ(1−a+1n)(Γ(1))2\displaystyle\implies \text{I} '(1)=\dfrac{1}{n} \dfrac{\Gamma \left(\dfrac{a+1}{n}\right)\Gamma ' \left(1-\dfrac{a+1}{n}\right)\Gamma(1)-\Gamma '(1)\Gamma\left(\dfrac{a+1}{n}\right)\Gamma\left(1-\dfrac{a+1}{n}\right)}{(\Gamma (1))^2}⟹I′(1)=n1(Γ(1))2Γ(na+1)Γ′(1−na+1)Γ(1)−Γ′(1)Γ(na+1)Γ(1−na+1)
Now, since Γ′(z)=ψ(z)⋅Γ(z)\displaystyle\Gamma '(z)=\psi(z)\cdot\Gamma(z)Γ′(z)=ψ(z)⋅Γ(z) and Γ′(1)=−γ\Gamma '(1)=-\gammaΓ′(1)=−γ and using Euler's reflection formula, we have,
I′(1)=πncsc(π(a+1)n(ψ(1−a+1n)+γ))\displaystyle\text{I}'(1)=\dfrac{\pi}{n}\csc\left(\dfrac{\pi(a+1)}{n}\left(\psi\left(1-\dfrac{a+1}{n}\right)+\gamma\right)\right)I′(1)=nπcsc(nπ(a+1)(ψ(1−na+1)+γ))
Also, from the original integral,
I′(1)=−∫0∞xaxn+1ln(xn+1) dx\displaystyle\text{I}'(1)=-\int_{0}^{\infty}\dfrac{x^a}{x^n+1}\ln (x^n+1) \ \mathrm{d}xI′(1)=−∫0∞xn+1xaln(xn+1) dx
∴∫0∞xaxn+1ln(xn+1) dx=−πncsc(π(a+1)n(ψ(1−a+1n)+γ)) (1)\displaystyle\therefore \int_{0}^{\infty}\dfrac{x^a}{x^n+1}\ln (x^n+1) \ \mathrm{d}x = -\dfrac{\pi}{n}\csc\left(\dfrac{\pi(a+1)}{n}\left(\psi\left(1-\dfrac{a+1}{n}\right)+\gamma\right)\right) \ (1)∴∫0∞xn+1xaln(xn+1) dx=−nπcsc(nπ(a+1)(ψ(1−na+1)+γ)) (1)
Next, let J(a)=∫0∞xa(xn+1)dx\displaystyle\text{J}(a)= \int_{0}^{\infty}\dfrac{x^a}{(x^n+1)}\mathrm{d}xJ(a)=∫0∞(xn+1)xadx
Note that J(a)=I(1)\text{J}(a)=\text{I}(1)J(a)=I(1)
=1nΓ(a+1n)Γ(1−a+1n)Γ(1)\displaystyle=\dfrac{1}{n} \dfrac{\Gamma \left(\dfrac{a+1}{n}\right)\Gamma\left(1-\dfrac{a+1}{n}\right)}{\Gamma(1)}=n1Γ(1)Γ(na+1)Γ(1−na+1)
=πncsc(π(a+1)n)\displaystyle=\dfrac{\pi}{n}\csc\left(\dfrac{\pi(a+1)}{n}\right)=nπcsc(nπ(a+1))
Therefore,
J′(1)=∫0∞xa1+xnlnx dx=−π2n2csc(π(a+1)n)cot(π(a+1)n) (2)\displaystyle\text{J}'(1)=\int_{0}^{\infty}\dfrac{x^a}{1+x^n}\ln x \ \mathrm{d}x = -\dfrac{{\pi}^{2}}{n^2}\csc\left(\dfrac{\pi(a+1)}{n}\right)\cot\left(\dfrac{\pi(a+1)}{n}\right) \ (2)J′(1)=∫0∞1+xnxalnx dx=−n2π2csc(nπ(a+1))cot(nπ(a+1)) (2)
Operating (1)−m×(2)(1)-m\times(2)(1)−m×(2), we have,
∫0∞xaxn+1ln(xn+1xm)dx=πncsc(π(a+1)n)[mπncot(π(a+1)n)−(ψ(1−a+1n)+γ)]\displaystyle\int_{0}^{\infty}\dfrac{x^a}{x^n+1}\ln \left(\dfrac{x^n+1}{x^m}\right)\mathrm{d}x=\dfrac{\pi}{n}\csc\left(\dfrac{\pi(a+1)}{n}\right)\left[\dfrac{m\pi}{n}\cot\left(\dfrac{\pi(a+1)}{n}\right)-\left(\psi\left(1-\dfrac{a+1}{n}\right)+\gamma\right)\right]∫0∞xn+1xaln(xmxn+1)dx=nπcsc(nπ(a+1))[nmπcot(nπ(a+1))−(ψ(1−na+1)+γ)]
Q.E.D.
Log in to reply
@Kartik Sharma Can you please re-check whether R.H.S. contains +γ+\gamma+γ or −γ-\gamma−γ in the bracket?
Edited! Great! Congratulations once again! (You can post the proof of the first challenge even though I've done already, a new proof will be accepted; just in case I thought you must be interested).
@Hasan Kassim
I'm not so good at high level integrals. But I'm writing all the proofs provided by u and trying to use them. Thanks a lot man. Keep on posting proofs!
so LoveLy As always
Problem Loading...
Note Loading...
Set Loading...
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Consider I(z)=∫0∞(xn+1)zxadx
Putting xn+1=t1, we have,
I(z)=n1∫01tz−(na+1−1)(1−t)(na+1−1)dt
=n1B(na+1,z−na+1)
=n1Γ(z)Γ(na+1)Γ(z−na+1)
⟹I′(z)=n1(Γ(z))2Γ(na+1)Γ′(z−na+1)Γ(z)−Γ′(z)Γ(na+1)Γ(z−na+1)
⟹I′(1)=n1(Γ(1))2Γ(na+1)Γ′(1−na+1)Γ(1)−Γ′(1)Γ(na+1)Γ(1−na+1)
Now, since Γ′(z)=ψ(z)⋅Γ(z) and Γ′(1)=−γ and using Euler's reflection formula, we have,
I′(1)=nπcsc(nπ(a+1)(ψ(1−na+1)+γ))
Also, from the original integral,
I′(1)=−∫0∞xn+1xaln(xn+1) dx
∴∫0∞xn+1xaln(xn+1) dx=−nπcsc(nπ(a+1)(ψ(1−na+1)+γ)) (1)
Next, let J(a)=∫0∞(xn+1)xadx
Note that J(a)=I(1)
=n1Γ(1)Γ(na+1)Γ(1−na+1)
=nπcsc(nπ(a+1))
Therefore,
J′(1)=∫0∞1+xnxalnx dx=−n2π2csc(nπ(a+1))cot(nπ(a+1)) (2)
Operating (1)−m×(2), we have,
∫0∞xn+1xaln(xmxn+1)dx=nπcsc(nπ(a+1))[nmπcot(nπ(a+1))−(ψ(1−na+1)+γ)]
Q.E.D.
Log in to reply
@Kartik Sharma Can you please re-check whether R.H.S. contains +γ or −γ in the bracket?
Log in to reply
Edited! Great! Congratulations once again! (You can post the proof of the first challenge even though I've done already, a new proof will be accepted; just in case I thought you must be interested).
@Hasan Kassim
I'm not so good at high level integrals. But I'm writing all the proofs provided by u and trying to use them. Thanks a lot man. Keep on posting proofs!
so LoveLy As always