Interesting Integral

I found this result while studying indefinite integral calculus last year.

In=et[f(t)+(1)n1f(n)(t)]dt=et[f(t)f(t)+f(t)...+(1)n1f(n1)(t)]+c\displaystyle I_{n}\,=\, \int e^{t} \cdot \left[f(t)+(-1)^{n-1}\cdot f^{(n)}(t)\right]dt\,=\,e^{t}\cdot\left[f(t)-f^{\prime}(t)+f^{\prime \prime}(t)-...+(-1)^{n-1}f^{(n-1)}(t)\right]+c, where f(k)(x)f^{(k)}(x) denotes the kkth derivate of f(x)f(x) and nZ+n \,\in\, \mathbb{Z^{+}} .

This is basically the generalization of the integral et[f(t)+f(t)]dt=etf(t)+c\displaystyle \int e^{t} \cdot \left[f(t)+f^{\prime}(t)\right] dt\,=\,e^{t}\cdot f(t)\,+\,c.

Proof :-\huge \text{Proof :-}

It can be seen that I1=et[f(t)+f(t)]dt \displaystyle I_{1}\,=\, \int e^{t} \cdot \left[f(t)+f^{\prime}(t)\right] dt . Using integration by parts,

I1=et[f(t)+f(t)]dt=etIIf(t)Idt+etf(t)dt=etf(t)etf(t)dt+etf(t)dt=etf(t)+c \displaystyle I_{1}\,=\, \int e^{t} \cdot \left[f(t)+f^{\prime}(t)\right] dt\,=\,\int \underbrace{e^{t}}_{\text{II}}\cdot \underbrace{f(t)}_{\text{I}} \,dt + \int e^{t} \cdot f^{\prime}(t) \,dt \,=\,e^{t}\cdot f(t) \,-\, \int e^{t} \cdot f^{\prime}(t)\,dt+ \int e^{t} \cdot f^{\prime}(t)\,dt\,=\,e^{t}\cdot f(t) + c \ .

So, I1I_{1} is true. Assume, IrI_{r} is true i.e Ir=et[f(t)+(1)r1f(r)(t)]dt=et[f(t)f(t)+f(t)...+(1)r1f(r1)(t)]+c\displaystyle I_{r}\,=\, \int e^{t} \cdot \left[f(t)+(-1)^{r-1}\cdot f^{(r)}(t)\right]dt\,=\,e^{t}\cdot\left[f(t)-f^{\prime}(t)+f^{\prime \prime}(t)-...+(-1)^{r-1}f^{(r-1)}(t)\right]+c.

Consider,

Ir+1=et[f(t)+(1)rf(r+1)(t)]dt=et[f(t)+(1)r1f(r)(t)(1)r1f(r)(t)+(1)rf(r+1)(t)]dt I_{r+1}\,=\,\int e^{t} \cdot \left[f(t)\,+\,(-1)^{r} \cdot f^{(r+1)}(t)\right]\,dt\,=\,\int e^{t} \cdot \left[f(t)\,+\,\mathbin{\color{#3D99F6}(-1)^{r-1} \cdot f^{(r)}(t)}\,-\,\mathbin{\color{#3D99F6}(-1)^{r-1} \cdot f^{(r)}(t)} \,+\,(-1)^{r} \cdot f^{(r+1)}(t)\right]\,dt

    et[f(t)+(1)r1f(r)(t)+(1)rf(r)(t)+(1)rf(r+1)(t)]dt=et[f(t)+(1)r1f(r)(t)]dt+et[(1)rf(r)(t)+(1)rf(r+1)(t)]dt\implies\int e^{t} \cdot \left[f(t)\,+\,\mathbin{\color{#3D99F6}(-1)^{r-1} \cdot f^{(r)}(t)}\,+\,\mathbin{\color{#3D99F6}(-1)^{r} \cdot f^{(r)}(t)} \,+\,(-1)^{r} \cdot f^{(r+1)}(t)\right]\,dt\,=\, \int e^{t} \cdot \left[f(t)\,+\,\mathbin{\color{#3D99F6}(-1)^{r-1} \cdot f^{(r)}(t)}\right]dt \,+\, \int e^{t} \cdot \left[\mathbin{\color{#3D99F6}(-1)^{r} \cdot f^{(r)}(t)} \,+\,(-1)^{r} \cdot f^{(r+1)}(t)\right]\,dt

    Ir+(1)r[etIIf(r)(t)I+etf(r+1)(t)]dt=Ir+(1)r[etf(r)(t)etf(r+1)(t)dt+etf(r+1)(t)dt]=Ir+(1)retf(r)(t)\implies I_{r}\,+\, (-1)^{r} \cdot \int \left[\underbrace{e^{t}}_{\text{II}}\cdot \underbrace{\mathbin{\color{#3D99F6} f^{(r)}(t)}}_{\text{I}} \,+\,e^{t}\cdot f^{(r+1)}(t)\right]\,dt\,=\,I_{r}+ (-1)^{r} \cdot \left[e^{t} \cdot f^{(r)}(t)\,-\,\int e^{t} \cdot f^{(r+1)}(t)\,dt\,+\,\int e^{t} \cdot f^{(r+1)}(t)\,dt\right]\,=\,I_{r}+(-1)^{r} \cdot e^{t}\cdot f^{(r)}(t).

From our assumption, it follows that,

Ir+1=et[f(t)f(t)+f(t)...+(1)rf(r1)(t)+(1)rf(r)(t)]+cI_{r+1}\,=\,e^{t}\cdot\left[f(t)-f^{\prime}(t)+f^{\prime \prime}(t)-...+(-1)^{r}f^{(r-1)}(t)+(-1)^{r}\cdot f^{(r)}(t)\right]+c.

So, Ir+1I_{r+1} is true. Hence, IrI_{r} is true     \implies Ir+1I_{r+1} is true. So, by induction, InI_{n} is true nZ+\forall \,n \,\in\,\,\mathbb{Z^{+}}.

Also, integrals of the form [f(logx)+(1)n1f(n)(logx)]dx\displaystyle \int \left[f(\log x)+(-1)^{n-1}\cdot f^{(n)}(\log x)\right]\,dx can be reduced to the aforementioned integral by the substitution t=log(x)t=\log (x).

#Calculus

Note by Aditya Sky
4 years ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Awesome proof - dont have time to check its validity but quick glance looks correct!

Elethelectric Penguin - 3 years, 10 months ago

ground braking

Nahom Assefa - 2 years, 11 months ago
×

Problem Loading...

Note Loading...

Set Loading...