Interesting problem Prove that every positive integer having 3^m equal digits is divisible by 3^m

Please provide me a solution...

Note by Alpha Beta
8 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

first of all m>or= 1, Now let there be a no. with 3^m equal digits and he digit be k ; k = {1,2,3,4,5,6,7,8,9} A no. is divisible by 3 if the sum of it's digits is divisible by 3. therefore the sum of digits of the no. is (3^m)k. on dividing by 3 we get the sum of digits must be [3^(m-1)]k, which itself is divisible by 3. and by induction we conclude that the no. is divisible by 3. However a case may arise when [3^(m-1)]k turns out to be a single digit no., while the actual no. on dividing by 3 and calculating the sum gives a different result, say n- digit. however notice a no. is divisible by 3 if the sum of it's digits is divisible by 3. However this implies if the sum of digits is a multiple of 3, thus sum of its own digits must be a multiple of 3. Thus when you take the sum of that n-digit no.'s digit and go on doing so until you get a single digit you find that the value is equal to [3^(m-1)]k.

Ekdeep SIngh Lubana - 8 years, 3 months ago

Log in to reply

It's a tough explanation although, but try with some examples and you'll get what I'm saying.

Ekdeep SIngh Lubana - 8 years, 3 months ago

Log in to reply

Can you provide me your gmail or any other working id....

alpha beta - 8 years, 3 months ago

Log in to reply

You can show this easily by induction. Any number consisting of 3^m equal digits can be written as k(111111111)k(111111\ldots111) where kk is the digit. We can factor the sting of 1s as into a string of 1s with one third the length, multiplied by a number consisting of three 1s and many 0s in the middle. (the number of 1s and 0s can be made more exact in terms of mm, if you want to be more rigorous). By induction, the smaller string of 1s is divisible by 3m13^{m-1} and the number with three 1s is clearly divisible by 3, so the original number is divisible by 3m3^m.

Lino Demasi - 8 years, 3 months ago

Prove that there are infinetly many primes of the form 6n-1.

Aritri Samaddar - 5 years, 2 months ago

Log in to reply

Just a quick thought... One can say tat if there are limited primes of the form of 6n-1, then all the remaining primes after the largest 6n-1 prime will be of the form of 6n+1... But we know that not all the primes are of the form of 6n+1, this can lead to a rigorous proof via contradiction... you can try it... seems easy EDIT- I forgot to mention that all primes are of the form 6n+1 and 6n-1 only

Ekdeep SIngh Lubana - 5 years, 1 month ago
×

Problem Loading...

Note Loading...

Set Loading...