I have a book, which states this inequality and need to be proof. Absolutely, this is a problem.
Given \(a,b \in \mathbb{R}^+\) and \(a\neq b\), proof that \[a^{3} +b^{3} > a^{2}b +ab^{2}\]
Proof: since , obviously that
Multiply both ineqs and we have
Done!
Is that valid? Comments will be appreciated!
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.