This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
here is the answer
1126556662642228006093484844589654660409766825886615134672751623681885761448710851076455885278
5503888369263542541245215475887146185458867592408705714911005332979918736584543387873614817682
1698711903263188883111358931229506277792418450828914126089113516773333012657999191772915407411
4060129980355350094850500821470148398848750291235944291823279709679787811839066497518396203481
4376298342364082281049459219168573193879002025098726867566525090238993799794342184031144462682
4489304917371070647666388014281248554129282385716037891214945173139168343777446720303921101574
7280662076152257834895276525086610591461059121672082155290472254521478304768337318091987576640
4807850725193626152088741899198439050761614106448158257099726372461650793822887293523671088888
5236249238444262389993371389112501314156545670065569796176671436891990865072207769071861646191
6843735581298472354039464995455418752401072032347796621230412580243144063341153970333447318952
7556625594036286575651568038354144571441586076898592033647317773114336620730551910155985032836
2102629561133996472855535826532960776952745285500269469553843585395987921243153712631953130289
6979299440453153298538684645347207814771707245990238836052928150370247181361043987901129544516
6814547121599000285235718976629012464121813643049956168356225156220621620428907338855603983382
9420061766759582598825750191969718355115753635140825316347743370080178380483419767564275355152
2712041621123392361988010447064888154683480281857436721309432958854009254944044574646193810741
7237863266545909032083002285710166076631813890448018653493639310595828413506623801326252766738
6458199597507816764574343598867525893130874322821862644275673672165701416750296352387574382694
4907430885167246096713014483540685909506469798842853995626299108771656385663520269583150177679
8773863458805496837868522633772452828561983621495703274156936988754314519322938308729962724373
1534735621115143789355365173289512301347240436812254652277257442963412494437399157486010077004
3828531177215550940472595586951100961299043130523724050584210873088624833917494968200992032823
5375395804363615920712727105593032081338663541586296565607707895918382418648524489742343011193
4642814062684376701257830124244409340849065443131061940646320432500443459589489429238804793237
1197151792828017387125803187440611028308269785340765966328259967628339875134804382428708318261
7404703448266400994840830323101205869799929619900038232614586133131168477191610488720486128182
8287362540404436403744629210303219134657880721286577354583512065281214941262213313784130050842
7992832055586203153265079743872990294075760315267276306810750175395175802825028734579375114330
7922526409005990031469152387099460716013138803326674642665162563969219275865474077499127784842
1048404091931914557580438985183152644205913437749333629300153344983214846727471485895755829558
7381299354747303710724617097559369279217065518327651372114497297193596753931507221635756917551
1803147468008858056539191568955794491183411684200613989928770768440998750653376578641810440706
8624286185175086033899864046513182287558453803534775516237836979176509039186032518833909806745
9451745941662786162864196510883573171410919147805593094228202366579348246800359462312387474491
7331237473952393089048294519094410921904408589044335028604054422115975223127608977762247971829
4928568492775315774159688577303541267669846057579141672707622442258263887551980793353975037869
6818685543518245137091261938118122188124921431779467672600775427910641542410939444038224473018
7846928773989827453732551901822148538647484037770900921957076020782539228429304983907561795717
0380880299567730684438543129957219052379731517962725168618280699021957286517936936969299329517
0624632676365719048008241753485018438773258840984721010422356998311543456879113358098181588724
1417350991712902780263401578153216330089819388671526848659489064866983474732666244186204771145
5002832305376418367795278785679142852063403894033689698390733509995504681163029925205013179609
8016246101441854084132639160076139230292291009081069457018478883953437084017577118663257726329
4587433024736831479598117466536750366604651907963425389832960478072807489887028211684719651146
9678354757123706095733384282707486798977367881478218536347760891711152959963536060019190812393
4100745870127544254247446274028707349127714532838057178471597308981654732469541423189307952229
1344628214351420241084321945566079131860437226766499386152818764283706010875426980971321788970
9439191242019099365686292757612093193277596680149716792246252447971214464367675675660150940592
1523624968567728656264785885112243443863582439657812076534980965118900928095863478595233040301
4676087856492991546043956701093983362178850712796868222991308072608079049875709541613752764519
8862341458554082757022609128069716039571483214456850425335724513655060130189823917557299506002
2049258477003205984743027941564316443033648991208139789966489320021074796976921917863737926831
2075826412504313761320721613128600029744565205585549895382020936604943051766920712758454920126
1659038687977543742867479381275724752163505000947194048356709051924268456017732527648493642005
6709361427709677688939521680975713141789753959525595530745291628572178340430837321719904534385
7063545921675709597744389348236489887245227030580735252599979751160697508319021868650404898511
3524077079649325662361235575210942494306848060410361447469913533066402818626773429624330948926
2946458733904638936650286283320088340007855474190410456604047237103638319402292918816208462709
4296129982152422358275343785340612579918353405912603377277715208191743899279293939825163728341
7758247952119280495151637502609579015192302202088777034232712894524250659349110601600939608389
7529747155382868522469966962848673851570273070554232445563866125736562730463743880558942974433
2403932509319725077406621128289713103768159012521435644594702636733703868935111187041518082673
5603457799863394318090223135462224125252742836358144464695606979783220448504169641327700535120
8504115264461537493305802940116972698403405123128567669417864096639557726086272394275055052363
5373028872819547077765335732092053368108550014056465430878071900656255711165098531524239692252
8752525758865035029067854185026478902906886880799194940201108152547963493449718546716281890251
5681417211005815194806370220842687408483920785142884729553021685268710808863736701436734506947
0409820108558339591148469125262507041649030549855476456460270700909382347098401298172634034301
1879400926474371085923394507419635257084465085431725652917377960016866594326397368022330296512
6789419235594957539432675160750439529074465666475918061717005190807500686622686340702019623449
71062269207572345527695709062375446153961899288085659608510923549472856850231479824
Log in to reply
Uhh... congratulations? Actually, how on earth did you get that?
Log in to reply
wolframalpha
The answer is indeterminate because f(0)=02016−02015+⋯+00.
See What is 00.
Log in to reply
Then what will be the answer if we take out f(0), sir ?
Log in to reply
The answer is very huge.
Hint: x+1xn+1=xn−1−xn−2+xn−2−⋯+1 for positive odd n.
2016