Iterated Integral

Can anybody do the following integral?

12x3xey/xdydx\int\limits_1^2\int\limits_{x^3}^{x}e^{y/x}dydx

Note by Esraa Ibrahim
7 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

You start by evaluating the inner integral

12 ⁣x3x ⁣eyxdydx=12 ⁣[xeyx]x3xdx=12 ⁣(exxex2)dx \int_1^2 \! \int_{x^3}^{x} \! e^{\frac{y}{x}} \, dy \, dx = \int_1^2 \! [xe^{\frac{y}{x}}]_{x^3}^{x} \, dx = \int_1^2 \! (ex-xe^{x^2}) \, dx

You then follow by evaluating the outer integral

12 ⁣(exxex2)dx=[e2x212ex2]12=(2e12e4)(12e12e)=12e(4e3) \int_1^2 \! (ex-xe^{x^2}) \, dx = [ \frac{e}{2} x^2 - \frac{1}{2} e^{x^2} ]_1^2 = ( 2e - \frac{1}{2} e^{4} ) - ( \frac{1}{2} e - \frac{1}{2} e ) = \boxed{\frac{1}{2} e (4 - e^{3})}

Cole Coupland - 7 years, 2 months ago

Log in to reply

thanks alot ^^

Esraa Ibrahim - 7 years, 2 months ago

Aw... i know the answer but i dont know how to explain it in this website....

Raka Panuntun - 7 years, 2 months ago

Log in to reply

thanks...no problem^^

Esraa Ibrahim - 7 years, 2 months ago
×

Problem Loading...

Note Loading...

Set Loading...