If a+b=c where c∈Z+;b∈Z+ and a∈Z+ then for all n∈Z+ either an+bn or an−bn (not both at the same time) will be divisible by c
Proof
a+b=c..........[1]
Case 1 (n is odd)
b≡b(modc)
bn≡bn(modc)..........[A1]
a≡a(modc)..........[A2]
From [1] and [A2] :
a≡−b(modc)
an≡(−b)n(modc)
an≡−bn(modc)..........[A3]
Adding [A1],[A3]
an+bn≡0(modc)
∴c∣(an+bn)
Case 2 (n is even)
b≡b(modc)
bn≡bn(modc)..........[B1]
a≡a(modc)..........[B2]
From [1] and [B2] :
a≡−b(modc)
an≡(−b)n(modc)
an≡bn(modc)..........[B3]
Subtracting [B1],[B3]
an−bn≡0(modc)
∴c∣(an−bn)
Bonus :
- Prove or disprove the converse of the above theorem
#NumberTheory
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Nice!
In more general for KC i.e a+b=kc