JOMO 6, Long 2

Given that for \(x, y, z\geq 0\), we have \(xy+yz+zx = 3\) Then prove that: \[\frac{x+y+z}{x^2y^2z^2} \geq \frac{9}{x^3+y^3+z^3 - (x+y+z)\left[(x+1)(x-1)+(y+1)(y-1)+(z-1)(z+1)\right]}\]

#Algebra #JOMO #Jomo6

Note by Yan Yau Cheng
6 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Note that: x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) Then, x^3+y^3+z^3-3xyz=(x+y+z)[(x^2-1)+(y^2-1)+(z^2-1)] So, x^3+y^3+z^3-(x+y+z)[(x+1)(x-1)+(y+1)(y-1)+(z+1)(z-1)]=3xyz Now, it simply to prove (x+y+z)/[(xyz)^2] >= 9/(3xyz)=3/(xyz) <=> (x+y+z)/(xyz) >= 3 <=> 1/(xy)+1/(yz)+1/(xz) >= 3 Since x,y,z>0, by AM-HM, (xy+yz+zx)[1/(xy)+1/(yz)+1/(xz)] >= 9 => [1/(xy)+1/(yz)+1/(xz)] >= 3 , and we done~ :) ~

汶汶 樂 - 6 years, 10 months ago

Log in to reply

LaTeX{\LaTeX}'d

Note that: x3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx)x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)

Then, x3+y3+z33xyz=(x+y+z)[(x21)+(y21)+(z21)]x^3+y^3+z^3-3xyz=(x+y+z)[(x^2-1)+(y^2-1)+(z^2-1)]

So, x3+y3+z3(x+y+z)[(x+1)(x1)+(y+1)(y1)+(z+1)(z1)]=3xyzx^3+y^3+z^3-(x+y+z)[(x+1)(x-1)+(y+1)(y-1)+(z+1)(z-1)]=3xyz

Now, it simply to prove x+y+z(xyz)293xyz=3xyz    x+y+zxyz3    1xy+1yz+1xz3\begin{aligned}\dfrac{x+y+z}{(xyz)^2} &\ge \dfrac{9}{3xyz}=\dfrac{3}{xyz}\\ &\iff \dfrac{x+y+z}{xyz} \ge 3\\ &\iff \dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz} \ge 3 \end{aligned} Since x,y,z>0x,y,z > 0, by AM-HM, (xy+yz+zx)[1xy+1yz+1xz]9    1xy+1yz+1xz3\begin{aligned}(xy+yz+zx)\left[\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz} \right] &\ge 9 \\ \implies \dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz} &\ge 3\end{aligned} and we done~ :) ~

Daniel Liu - 6 years, 10 months ago
×

Problem Loading...

Note Loading...

Set Loading...