JOMO 6, Long 3

A teacher writes down three numbers, 1, 2 and 3, on the whiteboard. Now, every student take turns to the whiteboard and erase one number, and then replace it by the sum of the two numbers left. After some turns, is it possible to have the numbers: 62012,72013,820146^{2012}, 7^{2013}, 8^{2014} on the whiteboard at the same time? Give proof.

#Combinatorics #JOMO #Jomo6

Note by Yan Yau Cheng
6 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Notice that a curious characteristic (even/uneven) of the initial sum of numbers never changes. We have that 1+2+31+2+3 is even, but 62012+72013+820146^{2012} + 7^{2013} + 8^{2014} is uneven. By the Invariance Principle, it is not possible to have these numbers on the whiteboard. QED.\boxed{\mathbb{QED}.}

Guilherme Dela Corte - 6 years, 11 months ago

After every turn, the sum of the numbers on the whiteboard will be even (from a,b,c on the whiteboard we will gen 2*(a+b) or the analogs) Since 6^2012+7^2013+8^2014 is odd the answer is NO

Tudor Darius Cardas - 5 years, 4 months ago
×

Problem Loading...

Note Loading...

Set Loading...