Take any four digit number (whose digits are not all identical), and do the following:
- Rearrange the string of digits to form the largest and smallest 4-digit numbers possible.
- Take these two numbers and subtract the smaller number from the larger.
- Use the number you obtain and repeat the above process.
What happens if you repeat the above process over and over?
Amazing thing is this: every four digit number whose digits are not all the same will eventually hit 6174, in at most 7 steps, and then stay there!
#NumberTheory
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
There are no comments in this discussion.