Hello everyone , this is part 2.2 of binomial theorem ,a continuation of 2.1 where we used differentiation to get desired results . In this part we will use Integration , a complicated tool in mathematics which helps in calculating areas and averaging continuous functions .Only basic understanding of integrals and U-substitution is required to understand this note. By the way, check out wiki pages of brilliant on Definite integrals and Integration of Algebraic Functions , they are just awesome . Let's start with our cute little equation , expansion of (1+x)n . Let's call it equation I , where x is a complex number and n is a whole number .
I Hope you enjoyed this note and If someone knows the answer to 2nd problem please post it in the comments section below. thank you :) .
And Merry Christmas everyone !!!
This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.
When posting on Brilliant:
Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.
Markdown
Appears as
*italics* or _italics_
italics
**bold** or __bold__
bold
- bulleted - list
bulleted
list
1. numbered 2. list
numbered
list
Note: you must add a full line of space before and after lists for them to show up correctly
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
Second problem's answer :
The problem burns down to ∫01x(n+1)(1+x)n+1−1dx
Log in to reply
Exactly I went a little ahead and got this to be s=1/(n+1)*(1+sum (2^r-1^r)/r)where r varies from 2 to n+1.