i'm wondering is this valid?
\(\lim _{ x\rightarrow \infty }{ { (1+\frac { 1 }{ x } ) }^{ x }\quad =\quad { (1\frac { 1 }{ x } ) }^{ x }\quad =\quad ({ \frac { 1(x)+1 }{ x } ) }^{ x }\quad =\quad ({ \frac { x+1 }{ x } ) }^{ x }\quad }\) and since \(\infty +1\) does not make much of a difference so is still \(\infty\) then \({ (\frac { x }{ x } ) }^{ x }\quad =\quad 1\quad\) if we treat \(\infty\) like a number.
therfore
Easy Math Editor
This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.
When posting on Brilliant:
*italics*
or_italics_
**bold**
or__bold__
paragraph 1
paragraph 2
[example link](https://brilliant.org)
> This is a quote
\(
...\)
or\[
...\]
to ensure proper formatting.2 \times 3
2^{34}
a_{i-1}
\frac{2}{3}
\sqrt{2}
\sum_{i=1}^3
\sin \theta
\boxed{123}
Comments
You can't treat infinity like a number that's where the fallacy begins.