Limits, Riemann Sum and Definite Integral

limnΣr=0n11nf(rn)+Σr=1n1nf(rn)201f(x)dx\large \large \lim_{n\to\infty } \left \lfloor \frac{\Sigma_{r=0}^{n-1} \frac1n f(\frac{r}n) + \Sigma_{r=1}^{n} \frac1n f(\frac{r}n)}{2 \int_0^1f(x) \, dx}\right \rfloor

Does the above limit exist? If so, what is its value: 0 or 1?

#Calculus

Note by Shubhamkar Ayare
4 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

limnr=0n11nf(rn)=1nf(0)+(limn1n)(limnn1n)f(x)dx=01f(x)dx+1nf(0) \displaystyle\lim_{n \to \infty} \sum_{r=0}^{n-1} \dfrac{1}{n}f\left(\dfrac{r}{n}\right) = \dfrac{1}{n}f\left(0\right)+\int_{\left(\small\displaystyle\lim_{n \to \infty}\frac{1}{n}\right)}^{\left(\small\displaystyle\lim_{n \to \infty}\frac{n-1}{n}\right)} f(x)dx = \int_{0}^{1} f(x) dx +\dfrac{1}{n}f\left(0\right)

Similarly ,  \text{Similarly , }

limnr=1n1nf(rn)=1nf(nn)+(limn1n)(limnn1n)f(x)dx=01f(x)dx+1nf(1) \displaystyle\lim_{n \to \infty} \sum_{r=1}^{n} \dfrac{1}{n}f\left(\dfrac{r}{n}\right) = \dfrac{1}{n}f\left(\dfrac{n}{n}\right)+\int_{\left(\small\displaystyle\lim_{n \to \infty}\frac{1}{n}\right)}^{\left(\small\displaystyle\lim_{n \to \infty}\frac{n-1}{n}\right)} f(x)dx = \int_{0}^{1} f(x) dx+\dfrac{1}{n}f\left(1\right)

Our limit becomes \text{Our limit becomes}

limn1n[f(1)+f(0)]+201f(x)dx201f(x)dxlimn1n[f(1)+f(0)]201f(x)dx+1=1 \displaystyle\lim_{n \to \infty} \left\lfloor \dfrac{\dfrac{1}{n}\left[ f\left( 1 \right)+f\left(0\right) \right]+2 \displaystyle\int_{0}^{1} f(x) dx}{2 \displaystyle\int_{0}^{1} f(x) dx} \right\rfloor \\ \displaystyle\lim_{n \to \infty} \left\lfloor \dfrac{\dfrac{1}{n}\left[ f\left( 1 \right)+f\left(0\right) \right]}{2 \displaystyle\int_{0}^{1} f(x) dx} + 1 \right\rfloor = 1

Sabhrant Sachan - 4 years, 6 months ago

Log in to reply

May I consider that as: unless f(x) is given, the limit does not exist?

If a geometrical approach is used (definite integration is area under the curve; the sum is the total area bars of width 1/n and height f(r/n)), is there any way to arrive at a conclusion?

What if f(x) is given as increasing or decreasing? What if n does not tend to infinity? (I had a question in class test: n did not tend to infinity and f(x) was decreasing. Our sir, with whom I disagree in this matter, said that if n tends to infinity, the answer would be 1, from 'Definite Integration as a Limit of Sum' concept. )

Shubhamkar Ayare - 4 years, 6 months ago

Trapezoidal Rule - Wikipedia or Trapezium Rule - Brilliant. Nothing can be said about the limit, unless sgn(f''(x)) is given.

Shubhamkar Ayare - 4 years, 6 months ago
×

Problem Loading...

Note Loading...

Set Loading...