Locus of ratios

A triangle ABCABC has a fixed base BCBC. If AB:AC=1:2AB:AC= 1:2, then prove that the locus of the vertex AA is a circle whose centre is on the side BCBC but not the midpoint of BCBC.

#Locus #Goldbach'sConjurersGroup

Note by A Brilliant Member
7 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

See http://www.cut-the-knot.org/Curriculum/Geometry/LocusCircle.shtml

Xuming Liang - 7 years, 3 months ago

Log in to reply

Thanks!

A Brilliant Member - 7 years, 3 months ago

Assume the side BC lies on X axis with the mid point as Origin (0,0) and B (-a,0) C (a,0). Let the locus point A be (x,y)

Now since AB: AC = 1:2

\frac { \sqrt { { (x+a) }^{ 2 }+{ y }^{ 2 } } }{ \sqrt { { (x-a) }^{ 2 }+{ y }^{ 2 } } } =\frac { 1 }{ 2 }

Solving this you'll get a circle equation proving that the locus of A is a circle with centre on BC i.e on X axis

Sai Prashanth D - 7 years, 3 months ago

Log in to reply

Nice...

A Brilliant Member - 7 years, 3 months ago
×

Problem Loading...

Note Loading...

Set Loading...