Logic Proof

Note by Alexander Sludds
7 years, 7 months ago

No vote yet
3 votes

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

The statement that you are trying to prove may be thought of as four conditionals (although two are redundant, due to contraposition): if J then J & L; if not J then not (J & L); if J & L then J; and if not (J & L) then not J. The second and third of these are obvious, because of the way & works. The first is also obvious, since if J then L (as given by line two), hence if J then J & L. The last one follows similarly: if not (J & L), then not J or not L (de Morgan), and if not L then not J (contrapositive of line two). Thus, not (J & L) always implies not J.

In a Fitch-style natural deduction proof, the only premise would be that J implies L. Proving the biconditional would simply involve two subproofs of the conditionals. The one showing that L & J implies J would be very short; the one for showing J implies J & L would also be quite short.

I don't know how it would be best tackled in Hilbert's axioms

Alexander Bourzutschky - 7 years, 7 months ago

Note that (LJ)J (L \wedge J) \equiv J implies J(LJ) J \Rightarrow (L \wedge J) , which implies JL J \Rightarrow L , which is one of the premises. You should be able to fill in the gaps from there.

Christopher Johnson - 7 years, 7 months ago

Log in to reply

Your chain of "implies" is going in the wrong direction. You should not see what is implied by what you're trying to prove, or you might end up in a circular argument. (That is, unless they are bi-implies, or biconditionals, but as stated above they are not.)

Alexander Bourzutschky - 7 years, 7 months ago

Log in to reply

Careful. A circular argument would require treating the conclusion as a premise. This is not what was done! Note that the conclusion was manipulated in isolation. The point was to show (hint, really) that the second premise and the conclusion are logically equivalent; the first premise is irrelevant. One could also manipulate just the second premise in isolation and show the same thing.

Christopher Johnson - 7 years, 7 months ago
×

Problem Loading...

Note Loading...

Set Loading...